These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23348122)

  • 21. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity.
    Gerken JB; McAlpin JG; Chen JY; Rigsby ML; Casey WH; Britt RD; Stahl SS
    J Am Chem Soc; 2011 Sep; 133(36):14431-42. PubMed ID: 21806043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexagonal nanoplates of NiO/CoO/Fe2O3 composite acting as an efficient photocatalytic and electrocatalytic water oxidation catalyst.
    Zhao Y; Zhang Y; Ding Y; Chen M
    Dalton Trans; 2015 Sep; 44(35):15628-35. PubMed ID: 26245860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.
    Smith RD; Prévot MS; Fagan RD; Trudel S; Berlinguette CP
    J Am Chem Soc; 2013 Aug; 135(31):11580-6. PubMed ID: 23883103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.
    Bediako DK; Surendranath Y; Nocera DG
    J Am Chem Soc; 2013 Mar; 135(9):3662-74. PubMed ID: 23360238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts.
    Zelmanov G; Semiat R
    Water Res; 2008 Aug; 42(14):3848-56. PubMed ID: 18657285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-immobilized single-site iridium complexes for electrocatalytic water splitting.
    Joya KS; Subbaiyan NK; D'Souza F; de Groot HJ
    Angew Chem Int Ed Engl; 2012 Sep; 51(38):9601-5. PubMed ID: 22915549
    [No Abstract]   [Full Text] [Related]  

  • 31. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols.
    Egami H; Katsuki T
    J Am Chem Soc; 2009 May; 131(17):6082-3. PubMed ID: 19361160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abiotic formation of elemental selenium and role of iron oxide surfaces.
    Chen YW; Truong HY; Belzile N
    Chemosphere; 2009 Feb; 74(8):1079-84. PubMed ID: 19062070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
    Surendranath Y; Kanan MW; Nocera DG
    J Am Chem Soc; 2010 Nov; 132(46):16501-9. PubMed ID: 20977209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of the unusual kinetics of iron deposition in human H-chain ferritin.
    Bou-Abdallah F; Zhao G; Mayne HR; Arosio P; Chasteen ND
    J Am Chem Soc; 2005 Mar; 127(11):3885-93. PubMed ID: 15771525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xanthene-modified and hangman iron corroles.
    Schwalbe M; Dogutan DK; Stoian SA; Teets TS; Nocera DG
    Inorg Chem; 2011 Feb; 50(4):1368-77. PubMed ID: 21244031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.
    Doyle RL; Godwin IJ; Brandon MP; Lyons ME
    Phys Chem Chem Phys; 2013 Sep; 15(33):13737-83. PubMed ID: 23652494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde.
    Arena F; Parmaliana A
    Acc Chem Res; 2003 Dec; 36(12):867-75. PubMed ID: 14674778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron type catalysts for the ozonation of oxalic acid in water.
    Beltrán FJ; Rivas FJ; Montero-de-Espinosa R
    Water Res; 2005 Sep; 39(15):3553-64. PubMed ID: 16095660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.