BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23348839)

  • 1. Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance.
    Wu Z; Sawada T; Shiba K; Liu S; Kanao T; Takahashi R; Hattori N; Imai Y; Lu B
    Genes Dev; 2013 Jan; 27(2):157-62. PubMed ID: 23348839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila.
    Imai Y; Kanao T; Sawada T; Kobayashi Y; Moriwaki Y; Ishida Y; Takeda K; Ichijo H; Lu B; Takahashi R
    PLoS Genet; 2010 Dec; 6(12):e1001229. PubMed ID: 21151955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein.
    Natarajan R; Barber K; Buckley A; Cho P; Egbejimi A; Wairkar YP
    PLoS One; 2015; 10(9):e0138188. PubMed ID: 26393506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.
    Vilain S; Esposito G; Haddad D; Schaap O; Dobreva MP; Vos M; Van Meensel S; Morais VA; De Strooper B; Verstreken P
    PLoS Genet; 2012 Jan; 8(1):e1002456. PubMed ID: 22242018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila.
    Sen A; Kalvakuri S; Bodmer R; Cox RT
    Dis Model Mech; 2015 Jun; 8(6):577-89. PubMed ID: 26035866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process.
    Park J; Lee G; Chung J
    Biochem Biophys Res Commun; 2009 Jan; 378(3):518-23. PubMed ID: 19056353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Mitochondrial Changes by Alteration of the PINK1-Parkin Signaling in Drosophila.
    Inoshita T; Shiba-Fukushima K; Meng H; Hattori N; Imai Y
    Methods Mol Biol; 2018; 1759():47-57. PubMed ID: 28324489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria.
    Liu S; Sawada T; Lee S; Yu W; Silverio G; Alapatt P; Millan I; Shen A; Saxton W; Kanao T; Takahashi R; Hattori N; Imai Y; Lu B
    PLoS Genet; 2012; 8(3):e1002537. PubMed ID: 22396657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atg1-mediated autophagy suppresses tissue degeneration in
    Ma P; Yun J; Deng H; Guo M
    Mol Biol Cell; 2018 Dec; 29(26):3082-3092. PubMed ID: 30354903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control.
    Zhuang N; Li L; Chen S; Wang T
    Cell Death Dis; 2016 Dec; 7(12):e2501. PubMed ID: 27906179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila.
    Imai Y
    Neurosci Res; 2020 Oct; 159():40-46. PubMed ID: 32035987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease.
    Shiba-Fukushima K; Ishikawa KI; Inoshita T; Izawa N; Takanashi M; Sato S; Onodera O; Akamatsu W; Okano H; Imai Y; Hattori N
    Hum Mol Genet; 2017 Aug; 26(16):3172-3185. PubMed ID: 28541509
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Chen J; Xue J; Ruan J; Zhao J; Tang B; Duan R
    FASEB J; 2017 Dec; 31(12):5234-5245. PubMed ID: 28778978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting PINK1 and MQC in brain tumors.
    Lee KS; Lu B
    Oncotarget; 2014 May; 5(10):2864-5. PubMed ID: 24840210
    [No Abstract]   [Full Text] [Related]  

  • 16. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane.
    Gehrke S; Wu Z; Klinkenberg M; Sun Y; Auburger G; Guo S; Lu B
    Cell Metab; 2015 Jan; 21(1):95-108. PubMed ID: 25565208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant.
    Koh H; Kim H; Kim MJ; Park J; Lee HJ; Chung J
    J Biol Chem; 2012 Apr; 287(16):12750-8. PubMed ID: 22378780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin.
    Tain LS; Chowdhury RB; Tao RN; Plun-Favreau H; Moisoi N; Martins LM; Downward J; Whitworth AJ; Tapon N
    Cell Death Differ; 2009 Aug; 16(8):1118-25. PubMed ID: 19282869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct multilevel misregulations of Parkin and PINK1 revealed in cell and animal models of TDP-43 proteinopathy.
    Sun X; Duan Y; Qin C; Li JC; Duan G; Deng X; Ni J; Cao X; Xiang K; Tian K; Chen CH; Li A; Fang Y
    Cell Death Dis; 2018 Sep; 9(10):953. PubMed ID: 30237395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin.
    Park J; Lee SB; Lee S; Kim Y; Song S; Kim S; Bae E; Kim J; Shong M; Kim JM; Chung J
    Nature; 2006 Jun; 441(7097):1157-61. PubMed ID: 16672980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.