BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 23348944)

  • 21. Effects of hibernation on regulation of mammalian protein phosphatase type-2-A.
    Wu CW; Reardon AJ; Storey KB
    Cryobiology; 2013 Jun; 66(3):267-74. PubMed ID: 23499617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator.
    McFarlane SV; Mathers KE; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R434-R442. PubMed ID: 28077390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation.
    Gerson AR; Brown JC; Thomas R; Bernards MA; Staples JF
    J Exp Biol; 2008 Aug; 211(Pt 16):2689-99. PubMed ID: 18689422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The inhibition of succinate, beta-oxybutyrate and glutamate transport in the liver mitochondria of hibernating susliks].
    Brustovetskiĭ NN; Amerkhanov ZG
    Zh Evol Biokhim Fiziol; 1989; 25(6):718-23. PubMed ID: 2576170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of MAPKAPK2 during mammalian hibernation.
    Abnous K; Dieni CA; Storey KB
    Cryobiology; 2012 Dec; 65(3):235-41. PubMed ID: 22771537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels.
    Schwartz C; Ballinger MA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(10):R1292-300. PubMed ID: 26354846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Biochemical bases of the inhibition and activation of liver mitochondrial respiration in hibernating susliks].
    Brustovetskiĭ NN; Gogvadze VG; Maevskiĭ EI
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1988; (4):14-20. PubMed ID: 3395650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The effect of medium tonicity on the rate of respiration and oxidative phosphorylation in liver mitochondria of active and hibernating ground squirrels].
    Brustovetskiĭ NN; Amerkhanov ZG; Grishina EV; Maevskiĭ EI
    Biokhimiia; 1990 Feb; 55(2):201-9. PubMed ID: 2340313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels.
    Tessier SN; Storey KB
    Gene; 2012 Jun; 501(1):8-16. PubMed ID: 22513076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a reduced transcriptional state during hibernation in ground squirrels.
    Morin P; Storey KB
    Cryobiology; 2006 Dec; 53(3):310-8. PubMed ID: 16979617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature.
    Kutschke M; Grimpo K; Kastl A; Schneider S; Heldmaier G; Exner C; Jastroch M
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):584-9. PubMed ID: 23376108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels.
    Jensen BS; Pardue S; Duffy B; Kevil CG; Staples JF; Fago A
    Free Radic Biol Med; 2021 Jun; 169():181-186. PubMed ID: 33887435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels.
    Logan SM; Storey KB
    Cryobiology; 2016 Oct; 73(2):103-11. PubMed ID: 27614289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor.
    Morin P; Dubuc A; Storey KB
    Biochim Biophys Acta; 2008 Oct; 1779(10):628-33. PubMed ID: 18723136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the rate of respiration and oxidative phosphorylation in liver mitochondria from hibernating ground squirrels, Citellus undulatus.
    Brustovetsky NN; Mayevsky EI; Grishina EV; Gogvadze VG; Amerkhanov ZG
    Comp Biochem Physiol B; 1989; 94(3):537-41. PubMed ID: 2620498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saponin-permeabilization is not a viable alternative to isolated mitochondria for assessing oxidative metabolism in hibernation.
    Mathers KE; Staples JF
    Biol Open; 2015 May; 4(7):858-64. PubMed ID: 25979709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.
    Serkova NJ; Rose JC; Epperson LE; Carey HV; Martin SL
    Physiol Genomics; 2007 Sep; 31(1):15-24. PubMed ID: 17536023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 5'-Adenosine monophosphate deaminase regulation in ground squirrels during hibernation.
    Abnous K; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 253():110543. PubMed ID: 33301876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Akt during hibernation in Richardson's ground squirrels.
    Abnous K; Dieni CA; Storey KB
    Biochim Biophys Acta; 2008 Feb; 1780(2):185-93. PubMed ID: 17983605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial metabolism in hibernation and daily torpor: a review.
    Staples JF; Brown JC
    J Comp Physiol B; 2008 Sep; 178(7):811-27. PubMed ID: 18551297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.