These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23348947)

  • 21. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea).
    Kostál V; Yanagimoto M; Bastl J
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Feb; 143(2):171-9. PubMed ID: 16364670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of anoxia on ATP, water, ion and pH balance in an insect (
    Ravn MV; Campbell JB; Gerber L; Harrison JF; Overgaard J
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30630963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria.
    Gerber L; Kresse JC; Šimek P; Berková P; Overgaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Feb; 252():110850. PubMed ID: 33221397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid cold hardening delays the onset of anoxia-induced coma via an octopaminergic pathway in Locusta migratoria.
    Srithiphaphirom P; Robertson RM
    J Insect Physiol; 2022; 137():104360. PubMed ID: 35041846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster.
    Yerushalmi GY; Misyura L; Donini A; MacMillan HA
    J Insect Physiol; 2016 Dec; 95():89-97. PubMed ID: 27642001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chill coma in the locust, Locusta migratoria, is initiated by spreading depolarization in the central nervous system.
    Robertson RM; Spong KE; Srithiphaphirom P
    Sci Rep; 2017 Aug; 7(1):10297. PubMed ID: 28860653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma.
    Armstrong GA; Rodríguez EC; Meldrum Robertson R
    J Insect Physiol; 2012 Nov; 58(11):1511-6. PubMed ID: 23017334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
    Gerken AR; Mackay TF; Morgan TJ
    J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological correlates of chill susceptibility in Lepidoptera.
    Andersen MK; Jensen SO; Overgaard J
    J Insect Physiol; 2017 Apr; 98():317-326. PubMed ID: 28188725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold tolerance is linked to osmoregulatory function of the hindgut in
    Gerber L; Overgaard J
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance.
    Bayley JS; Overgaard J; Pedersen TH
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110970. PubMed ID: 33932565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid cold hardening modifies ion regulation to delay anoxia-induced spreading depolarization in the CNS of the locust.
    Srithiphaphirom P; Wang Y; Aristizabal MJ; Robertson RM
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111511. PubMed ID: 37690599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance.
    MacMillan HA; Andersen JL; Davies SA; Overgaard J
    Sci Rep; 2015 Dec; 5():18607. PubMed ID: 26678786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cold exposure causes cell death by depolarization-mediated Ca
    Bayley JS; Winther CB; Andersen MK; Grønkjær C; Nielsen OB; Pedersen TH; Overgaard J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9737-E9744. PubMed ID: 30254178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly.
    Teets NM; Peyton JT; Ragland GJ; Colinet H; Renault D; Hahn DA; Denlinger DL
    Physiol Genomics; 2012 Aug; 44(15):764-77. PubMed ID: 22735925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria (Orthoptera: Acridiidae).
    Wang XH; Kang L
    J Insect Physiol; 2005 Nov; 51(11):1277-85. PubMed ID: 16169005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperkalaemia, not apoptosis, accurately predicts insect chilling injury.
    Carrington J; Andersen MK; Brzezinski K; MacMillan HA
    Proc Biol Sci; 2020 Dec; 287(1941):20201663. PubMed ID: 33323084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris.
    Shintani Y; Ishikawa Y
    J Insect Physiol; 2007 Oct; 53(10):1055-62. PubMed ID: 17628587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.