These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 23349036)
1. Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Kim GH; Park EC; Yun SH; Hong Y; Lee DG; Shin EY; Jung J; Kim YH; Lee KB; Jang IS; Lee ZW; Chung YH; Choi JS; Cheong C; Kim S; Kim SI Proteomics; 2013 Apr; 13(7):1164-79. PubMed ID: 23349036 [TBL] [Abstract][Full Text] [Related]
2. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology. Capuani B; Della-Morte D; Donadel G; Caratelli S; Bova L; Pastore D; De Canio M; D'Aguanno S; Coppola A; Pacifici F; Arriga R; Bellia A; Ferrelli F; Tesauro M; Federici M; Neri A; Bernardini S; Sbraccia P; Di Daniele N; Sconocchia G; Orlandi A; Urbani A; Lauro D Am J Physiol Endocrinol Metab; 2015 May; 308(9):E744-55. PubMed ID: 25714671 [TBL] [Abstract][Full Text] [Related]
4. Exercise maintains euglycemia in association with decreased activation of c-Jun NH2-terminal kinase and serine phosphorylation of IRS-1 in the liver of ZDF rats. Király MA; Campbell J; Park E; Bates HE; Yue JT; Rao V; Matthews SG; Bikopoulos G; Rozakis-Adcock M; Giacca A; Vranic M; Riddell MC Am J Physiol Endocrinol Metab; 2010 Mar; 298(3):E671-82. PubMed ID: 19996384 [TBL] [Abstract][Full Text] [Related]
5. Decreased expression of endoplasmic reticulum chaperone GRP78 in liver of diabetic mice. Yamagishi N; Ueda T; Mori A; Saito Y; Hatayama T Biochem Biophys Res Commun; 2012 Jan; 417(1):364-70. PubMed ID: 22155243 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the endoplasmic reticulum subproteome in the livers of type 2 diabetic mice. Park EC; Kim GH; Yun SH; Lim HL; Hong Y; Kwon SO; Kwon J; Chung YH; Kim SI Int J Mol Sci; 2012 Dec; 13(12):17230-43. PubMed ID: 23247284 [TBL] [Abstract][Full Text] [Related]
7. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes. Jeong YT; Kim YD; Jung YM; Park DC; Lee DS; Ku SK; Li X; Lu Y; Chao GH; Kim KJ; Lee JY; Baek MC; Kang W; Hwang SL; Chang HW Mol Pharmacol; 2013 Jul; 84(1):147-57. PubMed ID: 23658008 [TBL] [Abstract][Full Text] [Related]
8. Dissection of metabolic pathways in the Db/Db mouse model by integrative proteome and acetylome analysis. Hölper S; Nolte H; Bober E; Braun T; Krüger M Mol Biosyst; 2015 Mar; 11(3):908-22. PubMed ID: 25592279 [TBL] [Abstract][Full Text] [Related]
10. c-Jun N-terminal kinase pathways in diabetes. Yang R; Trevillyan JM Int J Biochem Cell Biol; 2008; 40(12):2702-6. PubMed ID: 18678273 [TBL] [Abstract][Full Text] [Related]
11. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Kaneto H; Nakatani Y; Kawamori D; Miyatsuka T; Matsuoka TA; Matsuhisa M; Yamasaki Y Int J Biochem Cell Biol; 2005 Aug; 37(8):1595-608. PubMed ID: 15878838 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles. Ortiz PA; Bruno ME; Moore T; Nesnow S; Winnik W; Ge Y J Proteome Res; 2010 Mar; 9(3):1268-78. PubMed ID: 20095644 [TBL] [Abstract][Full Text] [Related]
13. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. Park HJ; Jung UJ; Cho SJ; Jung HK; Shim S; Choi MS J Nutr Biochem; 2013 Feb; 24(2):419-27. PubMed ID: 22694954 [TBL] [Abstract][Full Text] [Related]
14. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Kang JH; Goto T; Han IS; Kawada T; Kim YM; Yu R Obesity (Silver Spring); 2010 Apr; 18(4):780-7. PubMed ID: 19798065 [TBL] [Abstract][Full Text] [Related]
15. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Jelenik T; Séquaris G; Kaul K; Ouwens DM; Phielix E; Kotzka J; Knebel B; Weiß J; Reinbeck AL; Janke L; Nowotny P; Partke HJ; Zhang D; Shulman GI; Szendroedi J; Roden M Diabetes; 2014 Nov; 63(11):3856-67. PubMed ID: 24917575 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of plasma proteins in diabetic rats by 2D electrophoresis and MALDI-TOF-MS. Karthik D; Ilavenil S; Kaleeswaran B; Sunil S; Ravikumar S Appl Biochem Biotechnol; 2012 Mar; 166(6):1507-19. PubMed ID: 22258647 [TBL] [Abstract][Full Text] [Related]
17. Nuclear proteome profile of C57BL/6J mouse liver. Zhang Y; Fang C; Bao H; Fan H; Shen H; Yang P Sci China Life Sci; 2013 Jun; 56(6):513-23. PubMed ID: 23737002 [TBL] [Abstract][Full Text] [Related]
18. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. Wei Y; Wang D; Topczewski F; Pagliassotti MJ J Nutr Biochem; 2007 Jan; 18(1):1-9. PubMed ID: 16854579 [TBL] [Abstract][Full Text] [Related]
19. Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice. Latreille M; Laberge MK; Bourret G; Yamani L; Larose L Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E423-34. PubMed ID: 20587749 [TBL] [Abstract][Full Text] [Related]
20. Abnormal hepatic energy homeostasis in type 2 diabetes. Szendroedi J; Chmelik M; Schmid AI; Nowotny P; Brehm A; Krssak M; Moser E; Roden M Hepatology; 2009 Oct; 50(4):1079-86. PubMed ID: 19637187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]