BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 233495)

  • 1. Evolutionary adaptation of mitochondrial cytochrome c to its functional milieu.
    Margoliash E
    UCLA Forum Med Sci; 1979; (21):299-321. PubMed ID: 233495
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural and functional features of the interaction of cytochrome c with complex III and cytochrome c oxidase.
    Capaldi RA; Darley-Usmar V; Fuller S; Millett F
    FEBS Lett; 1982 Feb; 138(1):1-7. PubMed ID: 6279436
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron transport reactions in a cytochrome c-deficient mutant of Paracoccus denitrificans.
    Bolgiano B; Smith L; Davies HC
    Biochim Biophys Acta; 1989 Feb; 973(2):227-34. PubMed ID: 2537100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme activity of the cytochrome system of the egg and larva of the cattle tick (Boophilus microplus).
    Shanahan AG; O'Hagan JE
    Aust J Biol Sci; 1973 Apr; 26(2):453-63. PubMed ID: 4146220
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics of the interaction of cytochrome c oxidase of Paracoccus denitrificans with Paracoccus and mitochondrial cytochrome c.
    Smith L; Bolgiano B; Davies HC
    Prog Clin Biol Res; 1988; 274():619-35. PubMed ID: 2841681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of antibiotics on the development and stability of mitochondrial enzymes in Saccharomyces cerevisiae.
    Görts CP; Hasilík A
    Eur J Biochem; 1972 Sep; 29(2):282-7. PubMed ID: 4343088
    [No Abstract]   [Full Text] [Related]  

  • 7. Do evolutionary changes in cytochrome c structure reflect functional adaptations?
    Margoliash E; Ferguson-Miller S; Kang CH; Brautigan DL
    Fed Proc; 1976 Aug; 35(10):2124-30. PubMed ID: 181272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of photoaffinity labels in the study of mitochondrial function.
    Erecińska M
    Ann N Y Acad Sci; 1980; 346():444-57. PubMed ID: 6247952
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of the kinetics of oxidation of cytochrome c by cytochrome c oxidase: comparison of the reactions of purified and membrane-bound oxidase.
    Davies HC; Smith L; Nava ME
    Arch Biochem Biophys; 1981 Aug; 210(1):49-55. PubMed ID: 6271073
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutations in the structural gene for cytochrome c result in deficiency of both cytochromes aa3 and c in Neurospora crassa.
    Bottorff DA; Parmaksizoglu S; Lemire EG; Coffin JW; Bertrand H; Nargang FE
    Curr Genet; 1994 Oct; 26(4):329-35. PubMed ID: 7882427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of energization on the apparent Michaelis-Mentne constant for oxygen in mitochondrial respiration.
    Petersen LC; Nicholls P; Degn H
    Biochem J; 1974 Aug; 142(2):247-52. PubMed ID: 4374191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the respiratory chain in particles from Paracoccus denitrificans and bovine heart mitochondria by EPR spectroscopy.
    Albracht SP; van Verseveld HW; Hagen WR; Kalkman ML
    Biochim Biophys Acta; 1980 Dec; 593(2):173-86. PubMed ID: 6263319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c interaction with membranes. Interaction of cytochrome c with isolated membrane fragments and purified enzymes.
    Vanderkooi J; Erecińska M
    Arch Biochem Biophys; 1974 Jun; 162(2):385-91. PubMed ID: 4366145
    [No Abstract]   [Full Text] [Related]  

  • 14. Thermodynamic relationships in mitochondrial oxidative phosphorylation.
    Wilson DF; Erecińska M; Dutton PL
    Annu Rev Biophys Bioeng; 1974; 3(0):203-30. PubMed ID: 4153883
    [No Abstract]   [Full Text] [Related]  

  • 15. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the mitochondrial electron transport system.
    Hatefi Y; Hanstein WG; Davis KA; You KS
    Ann N Y Acad Sci; 1974 Feb; 227():504-20. PubMed ID: 4151263
    [No Abstract]   [Full Text] [Related]  

  • 18. [Cytochrome c conformation and its interactions with cytochrome c oxidase].
    Osyczka A; Turyna B
    Postepy Biochem; 1995; 41(1):59-66. PubMed ID: 7777436
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydroepiandrosterone and alpha-estradiol limit the functional alterations of rat brain mitochondria submitted to different experimental stresses.
    Morin C; Zini R; Simon N; Tillement JP
    Neuroscience; 2002; 115(2):415-24. PubMed ID: 12421607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.