These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23349692)

  • 1. An improved Ras sensor for highly sensitive and quantitative FRET-FLIM imaging.
    Oliveira AF; Yasuda R
    PLoS One; 2013; 8(1):e52874. PubMed ID: 23349692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging the activity of Ras superfamily GTPase proteins in small subcellular compartments in neurons.
    Oliveira AF; Yasuda R
    Methods Mol Biol; 2014; 1071():109-28. PubMed ID: 24052384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Imaging of Small GTPase Activity Using Conformational Sensors for GTPase Activity (COSGA).
    Wu YW
    Methods Mol Biol; 2021; 2262():259-267. PubMed ID: 33977482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging activation of two Ras isoforms simultaneously in a single cell.
    Peyker A; Rocks O; Bastiaens PI
    Chembiochem; 2005 Jan; 6(1):78-85. PubMed ID: 15637661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging.
    Yasuda R; Harvey CD; Zhong H; Sobczyk A; van Aelst L; Svoboda K
    Nat Neurosci; 2006 Feb; 9(2):283-91. PubMed ID: 16429133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLIM Imaging for Metabolic Studies in Live Cells.
    Choi H
    Methods Mol Biol; 2021; 2304():339-346. PubMed ID: 34028726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition.
    Hibino K; Shibata T; Yanagida T; Sako Y
    Biophys J; 2009 Sep; 97(5):1277-87. PubMed ID: 19720015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ras membrane orientation and nanodomain localization generate isoform diversity.
    Abankwa D; Gorfe AA; Inder K; Hancock JF
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1130-5. PubMed ID: 20080631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.
    Murakoshi H; Lee SJ; Yasuda R
    Brain Cell Biol; 2008 Aug; 36(1-4):31-42. PubMed ID: 18512154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage.
    Parkkola H; Siddiqui FA; Oetken-Lindholm C; Abankwa D
    Methods Mol Biol; 2021; 2262():233-250. PubMed ID: 33977480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase.
    Terai K; Matsuda M
    EMBO Rep; 2005 Mar; 6(3):251-5. PubMed ID: 15711535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.
    Sauer B; Tian Q; Lipp P; Kaestner L
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1328-32. PubMed ID: 25447281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling.
    Molzan M; Schumacher B; Ottmann C; Baljuls A; Polzien L; Weyand M; Thiel P; Rose R; Rose M; Kuhenne P; Kaiser M; Rapp UR; Kuhlmann J; Ottmann C
    Mol Cell Biol; 2010 Oct; 30(19):4698-711. PubMed ID: 20679480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Ras activation in living cells with GFP-RBD.
    Bivona TG; Quatela S; Philips MR
    Methods Enzymol; 2006; 407():128-43. PubMed ID: 16757320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids.
    Wiechmann S; Maisonneuve P; Grebbin BM; Hoffmeister M; Kaulich M; Clevers H; Rajalingam K; Kurinov I; Farin HF; Sicheri F; Ernst A
    J Biol Chem; 2020 Apr; 295(14):4526-4540. PubMed ID: 32086379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins.
    Terada T; Ito Y; Shirouzu M; Tateno M; Hashimoto K; Kigawa T; Ebisuzaki T; Takio K; Shibata T; Yokoyama S; Smith BO; Laue ED; Cooper JA
    J Mol Biol; 1999 Feb; 286(1):219-32. PubMed ID: 9931261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Monitoring Spatiotemporal Activation of Ras and PKD1 Using Confocal Fluorescent Microscopy.
    Xu X; Yun M; Wen X; Brzostowski J; Quan W; Wang QJ; Jin T
    Methods Mol Biol; 2016; 1407():307-23. PubMed ID: 27271911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging intracellular signaling using two-photon fluorescent lifetime imaging microscopy.
    Yasuda R
    Cold Spring Harb Protoc; 2012 Nov; 2012(11):1121-8. PubMed ID: 23118363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.