BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23349735)

  • 1. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.
    Genung MA; Bailey JK; Schweitzer JA
    PLoS One; 2013; 8(1):e53718. PubMed ID: 23349735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Belowground interactions shift the relative importance of direct and indirect genetic effects.
    Genung MA; Bailey JK; Schweitzer JA
    Ecol Evol; 2013 Jun; 3(6):1692-701. PubMed ID: 23789078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Welcome to the neighbourhood: interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities.
    Genung MA; Bailey JK; Schweitzer JA
    Ecol Lett; 2012 Jan; 15(1):65-73. PubMed ID: 22070740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities.
    Crutsinger GM; Reynolds WN; Classen AT; Sanders NJ
    Oecologia; 2008 Nov; 158(1):65-75. PubMed ID: 18766383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.
    Barbe L; Jung V; Prinzing A; Bittebiere AK; Butenschoen O; Mony C
    New Phytol; 2017 May; 214(3):1092-1102. PubMed ID: 28205289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.
    Schuster MJ
    Oecologia; 2016 Mar; 180(3):645-55. PubMed ID: 26216200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.
    Wang XY; Miao Y; Yu S; Chen XY; Schmid B
    Oecologia; 2014 Mar; 174(3):993-1005. PubMed ID: 24276771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.
    Suseela V; Tharayil N
    Glob Chang Biol; 2018 Apr; 24(4):1428-1451. PubMed ID: 28986956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands.
    Garibaldi LA; Semmartin M; Chaneton EJ
    Oecologia; 2007 Apr; 151(4):650-62. PubMed ID: 17242908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect.
    Zhang L; Zhang Y; Zou J; Siemann E
    Sci Rep; 2014 Jun; 4():5488. PubMed ID: 24976274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis.
    McCary MA; Schmitz OJ
    J Anim Ecol; 2021 Jul; 90(7):1714-1726. PubMed ID: 33782983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonization of Solidago altissima by the specialist aphid Uroleucon nigrotuberculatum: effects of genetic identity and leaf chemistry.
    Williams RS; Avakian MA
    J Chem Ecol; 2015 Feb; 41(2):129-38. PubMed ID: 25616613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phragmites australis meets Suaeda salsa on the "red beach": Effects of an ecosystem engineer on salt-marsh litter decomposition.
    Cui L; Pan X; Li W; Zhang X; Liu G; Song YB; Yu FH; Prinzing A; Cornelissen JHC
    Sci Total Environ; 2019 Nov; 693():133477. PubMed ID: 31362230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species.
    Zhao Q; Guo J; Shu M; Wang P; Hu S
    Sci Total Environ; 2020 Jun; 723():138106. PubMed ID: 32222509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial abundance and composition influence litter decomposition response to environmental change.
    Allison SD; Lu Y; Weihe C; Goulden ML; Martiny AC; Treseder KK; Martiny JB
    Ecology; 2013 Mar; 94(3):714-25. PubMed ID: 23687897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling above- and belowground neighbor effects on the growth, chemistry, and arthropod community on a focal plant.
    Kos M; Bukovinszky T; Mulder PP; Bezemeri TM
    Ecology; 2015 Jan; 96(1):164-75. PubMed ID: 26236901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traits determining the digestibility-decomposability relationships in species from Mediterranean rangelands.
    Bumb I; Garnier E; Coq S; Nahmani J; Del Rey Granado M; Gimenez O; Kazakou E
    Ann Bot; 2018 Mar; 121(3):459-469. PubMed ID: 29324980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland.
    Henry HA; Cleland EE; Field CB; Vitousek PM
    Oecologia; 2005 Jan; 142(3):465-73. PubMed ID: 15558326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms.
    López-Rojo N; Pérez J; Basaguren A; Pozo J; Rubio-Ríos J; Casas JJ; Boyero L
    Sci Rep; 2020 Nov; 10(1):19682. PubMed ID: 33184346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient subsidies to belowground microbes impact aboveground food web interactions.
    Hines J; Megonigal JP; Denno RF
    Ecology; 2006 Jun; 87(6):1542-55. PubMed ID: 16869430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.