These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 23349825)
1. Stabilization of the skeletal muscle ryanodine receptor ion channel-FKBP12 complex by the 1,4-benzothiazepine derivative S107. Mei Y; Xu L; Kramer HF; Tomberlin GH; Townsend C; Meissner G PLoS One; 2013; 8(1):e54208. PubMed ID: 23349825 [TBL] [Abstract][Full Text] [Related]
2. A mechanism of ryanodine receptor modulation by FKBP12/12.6, protein kinase A, and K201. Blayney LM; Jones JL; Griffiths J; Lai FA Cardiovasc Res; 2010 Jan; 85(1):68-78. PubMed ID: 19661110 [TBL] [Abstract][Full Text] [Related]
3. Designing calcium release channel inhibitors with enhanced electron donor properties: stabilizing the closed state of ryanodine receptor type 1. Ye Y; Yaeger D; Owen LJ; Escobedo JO; Wang J; Singer JD; Strongin RM; Abramson JJ Mol Pharmacol; 2012 Jan; 81(1):53-62. PubMed ID: 21989257 [TBL] [Abstract][Full Text] [Related]
4. N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. Lee EH; Rho SH; Kwon SJ; Eom SH; Allen PD; Kim DH J Biol Chem; 2004 Jun; 279(25):26481-8. PubMed ID: 15033987 [TBL] [Abstract][Full Text] [Related]
5. Redox modification of ryanodine receptor contributes to impaired Ca Agrawal A; Rathor R; Kumar R; Suryakumar G; Singh SN; Kumar B Free Radic Biol Med; 2020 Nov; 160():643-656. PubMed ID: 32916280 [TBL] [Abstract][Full Text] [Related]
6. Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Aracena P; Tang W; Hamilton SL; Hidalgo C Antioxid Redox Signal; 2005; 7(7-8):870-81. PubMed ID: 15998242 [TBL] [Abstract][Full Text] [Related]
7. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Bellinger AM; Reiken S; Carlson C; Mongillo M; Liu X; Rothman L; Matecki S; Lacampagne A; Marks AR Nat Med; 2009 Mar; 15(3):325-30. PubMed ID: 19198614 [TBL] [Abstract][Full Text] [Related]
8. FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. Avila G; Lee EH; Perez CF; Allen PD; Dirksen RT J Biol Chem; 2003 Jun; 278(25):22600-8. PubMed ID: 12704193 [TBL] [Abstract][Full Text] [Related]
10. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. Reiken S; Lacampagne A; Zhou H; Kherani A; Lehnart SE; Ward C; Huang F; Gaburjakova M; Gaburjakova J; Rosemblit N; Warren MS; He KL; Yi GH; Wang J; Burkhoff D; Vassort G; Marks AR J Cell Biol; 2003 Mar; 160(6):919-28. PubMed ID: 12629052 [TBL] [Abstract][Full Text] [Related]
11. FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II-III loop of the dihydropyridine receptor. O'Reilly FM; Robert M; Jona I; Szegedi C; Albrieux M; Geib S; De Waard M; Villaz M; Ronjat M Biophys J; 2002 Jan; 82(1 Pt 1):145-55. PubMed ID: 11751303 [TBL] [Abstract][Full Text] [Related]
12. RyR1 exhibits lower gain of CICR activity than RyR3 in the SR: evidence for selective stabilization of RyR1 channel. Murayama T; Ogawa Y Am J Physiol Cell Physiol; 2004 Jul; 287(1):C36-45. PubMed ID: 14985235 [TBL] [Abstract][Full Text] [Related]
13. FK-binding protein is associated with the ryanodine receptor of skeletal muscle in vertebrate animals. Qi Y; Ogunbunmi EM; Freund EA; Timerman AP; Fleischer S J Biol Chem; 1998 Dec; 273(52):34813-9. PubMed ID: 9857007 [TBL] [Abstract][Full Text] [Related]
14. K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association. Hunt DJ; Jones PP; Wang R; Chen W; Bolstad J; Chen K; Shimoni Y; Chen SR Biochem J; 2007 Jun; 404(3):431-8. PubMed ID: 17313373 [TBL] [Abstract][Full Text] [Related]
15. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Yano M; Kobayashi S; Kohno M; Doi M; Tokuhisa T; Okuda S; Suetsugu M; Hisaoka T; Obayashi M; Ohkusa T; Kohno M; Matsuzaki M Circulation; 2003 Jan; 107(3):477-84. PubMed ID: 12551874 [TBL] [Abstract][Full Text] [Related]
17. Effect of Calstabin1 depletion on calcium transients and energy utilization in muscle fibers and treatment opportunities with RyR1 stabilizers. Breckner A; Ganz M; Marcellin D; Richter J; Gerwin N; Rausch M PLoS One; 2013; 8(11):e81277. PubMed ID: 24303040 [TBL] [Abstract][Full Text] [Related]
18. Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Bultynck G; De Smet P; Rossi D; Callewaert G; Missiaen L; Sorrentino V; De Smedt H; Parys JB Biochem J; 2001 Mar; 354(Pt 2):413-22. PubMed ID: 11171121 [TBL] [Abstract][Full Text] [Related]
19. Effects of ivermectin and midecamycin on ryanodine receptors and the Ca2+-ATPase in sarcoplasmic reticulum of rabbit and rat skeletal muscle. Ahern GP; Junankar PR; Pace SM; Curtis S; Mould JA; Dulhunty AF J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):313-26. PubMed ID: 9852316 [TBL] [Abstract][Full Text] [Related]
20. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Fruen BR; Bardy JM; Byrem TM; Strasburg GM; Louis CF Am J Physiol Cell Physiol; 2000 Sep; 279(3):C724-33. PubMed ID: 10942723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]