BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23349995)

  • 1. Analysis of four aberrometers for evaluating lower and higher order aberrations.
    Cade F; Cruzat A; Paschalis EI; Espírito Santo L; Pineda R
    PLoS One; 2013; 8(1):e54990. PubMed ID: 23349995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of higher-order wavefront aberrations with 3 aberrometers.
    Liang CL; Juo SH; Chang CJ
    J Cataract Refract Surg; 2005 Nov; 31(11):2153-6. PubMed ID: 16412931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocular aberrations measured by the Fourier-based WaveScan and Zernike-based LADARWave Hartmann-Shack aberrometers.
    Knapp S; Awwad ST; Ghali C; McCulley JP
    J Refract Surg; 2009 Feb; 25(2):201-9. PubMed ID: 19241771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of higher order wavefront aberrations with four aberrometers.
    Cook WH; McKelvie J; Wallace HB; Misra SL
    Indian J Ophthalmol; 2019 Jul; 67(7):1030-1035. PubMed ID: 31238402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers.
    Xu Z; Hua Y; Qiu W; Li G; Wu Q
    BMC Ophthalmol; 2018 Jan; 18(1):18. PubMed ID: 29374460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the comparability and repeatability of four wavefront aberrometers.
    Visser N; Berendschot TT; Verbakel F; Tan AN; de Brabander J; Nuijts RM
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1302-11. PubMed ID: 21051697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher order aberrations in normal eyes measured with three different aberrometers.
    Burakgazi AZ; Tinio B; Bababyan A; Niksarli KK; Asbell P
    J Refract Surg; 2006 Nov; 22(9):898-903. PubMed ID: 17124885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Measurements and Clinical Outcomes After Wavefront-Guided LASEK Between iDesign and WaveScan.
    Jung JW; Chung BH; Han SH; Kim EK; Seo KY; Kim TI
    J Refract Surg; 2015 Jun; 31(6):398-405. PubMed ID: 26046707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the VISX wavescan and NIDEK OPD-scan aberrometers.
    Kim DS; Narváez J; Krassin J; Bahjri K
    J Refract Surg; 2009 May; 25(5):429-34. PubMed ID: 19507795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher order aberrations using the NIDEK OPD-Scan and AMO WaveScan.
    McAlinden C; Moore JE
    J Refract Surg; 2010 Aug; 26(8):605-8. PubMed ID: 20438022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.
    Ventura BV; Wang L; Ali SF; Koch DD; Weikert MP
    J Cataract Refract Surg; 2015 Aug; 41(8):1658-71. PubMed ID: 26432123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative higher-order aberration measurement of the LADARWave and Visx WaveScan aberrometers at varying pupil sizes and after pharmacologic dilation and cycloplegia.
    Awwad ST; El-Kateb M; McCulley JP
    J Cataract Refract Surg; 2006 Feb; 32(2):203-14. PubMed ID: 16564994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of Wavefront Aberration Measurements With a Placido-Based Topographer in Normal and Keratoconic Eyes.
    Ortiz-Toquero S; Rodriguez G; de Juan V; Martin R
    J Refract Surg; 2016 May; 32(5):338-44. PubMed ID: 27163620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Ocular Wavefront Aberration Measurements Obtained Using Two Hartmann-Shack Wavefront Aberrometers.
    Koh S; Inoue R; Iwamoto Y; Mihashi T; Soma T; Maeda N; Nishida K
    Eye Contact Lens; 2023 Mar; 49(3):98-103. PubMed ID: 36729105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting of the line of sight in keratoconus measured by a hartmann-shack sensor.
    Miháltz K; Kránitz K; Kovács I; Takács A; Németh J; Nagy ZZ
    Ophthalmology; 2010 Jan; 117(1):41-8. PubMed ID: 19896193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of monochromatic aberrations in young adults with different visual acuity and refractive errors.
    Yazar S; Hewitt AW; Forward H; McKnight CM; Tan A; Mountain JA; Mackey DA
    J Cataract Refract Surg; 2014 Mar; 40(3):441-9. PubMed ID: 24417894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.
    Al-Zeraid FM; Osuagwu UL
    BMC Ophthalmol; 2016 Mar; 16():29. PubMed ID: 27000109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeatability of a Commercially Available Adaptive Optics Visual Simulator and Aberrometer in Normal and Keratoconic Eyes.
    Shetty R; Kochar S; Grover T; Khamar P; Kusumgar P; Sainani K; Sinha Roy A
    J Refract Surg; 2017 Nov; 33(11):769-772. PubMed ID: 29117417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.