These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 2335023)

  • 1. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion.
    Chilian WM; Layne SM
    Circ Res; 1990 May; 66(5):1227-38. PubMed ID: 2335023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microvascular distribution of coronary vascular resistance in beating left ventricle.
    Chilian WM; Eastham CL; Marcus ML
    Am J Physiol; 1986 Oct; 251(4 Pt 2):H779-88. PubMed ID: 3766755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional distribution of alpha 1- and alpha 2-adrenergic receptors in the coronary microcirculation.
    Chilian WM
    Circulation; 1991 Nov; 84(5):2108-22. PubMed ID: 1682067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low doses of endothelin-1 on basal vascular tone and autoregulatory vasodilation in canine coronary microcirculation in vivo.
    Wang Y; Kanatsuka H; Akai K; Sugimura A; Kumagai T; Komaru T; Sato K; Shirato K
    Jpn Circ J; 1999 Aug; 63(8):617-23. PubMed ID: 10478812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro vasoactive reactions of coronary arteriolar microvessels to nitroglycerin.
    Jones CJ; Kuo L; Davis MJ; Chilian WM
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H461-8. PubMed ID: 8770085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitroglycerin on the coronary microcirculation in normal and ischemic myocardium.
    Kanatsuka H; Eastham CL; Marcus ML; Lamping KG
    J Cardiovasc Pharmacol; 1992 May; 19(5):755-63. PubMed ID: 1381774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
    Jones CJ; Kuo L; Davis MJ; DeFily DV; Chilian WM
    Circulation; 1995 Mar; 91(6):1807-13. PubMed ID: 7882491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium.
    Chilian WM
    Circ Res; 1991 Sep; 69(3):561-70. PubMed ID: 1873859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses.
    Komaru T; Lamping KG; Eastham CL; Dellsperger KC
    Circ Res; 1991 Oct; 69(4):1146-51. PubMed ID: 1934341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of ATP-sensitive potassium channels in regulating coronary microcirculation.
    Komaru T; Kanatsuka H; Dellsperger K; Takishima T
    Biorheology; 1993; 30(5-6):371-80. PubMed ID: 8186403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation.
    Kanatsuka H; Lamping KG; Eastham CL; Marcus ML
    Circ Res; 1990 Feb; 66(2):389-96. PubMed ID: 2297810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenergic vasomotion in the coronary microcirculation.
    Chilian WM
    Basic Res Cardiol; 1990; 85 Suppl 1():111-20. PubMed ID: 1982606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired dilation of coronary arterioles during increases in myocardial O(2) consumption with hyperglycemia.
    Ammar RF; Gutterman DD; Brooks LA; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E868-74. PubMed ID: 11001770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation.
    Kuo L; Davis MJ; Chilian WM
    Circulation; 1995 Aug; 92(3):518-25. PubMed ID: 7543382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dilation of coronary microvessels by adenosine induced hypotension in dogs.
    Habazettl H; Conzen PF; Vollmar B; Baier H; Christ M; Goetz AE; Peter K; Brendel W
    Int J Microcirc Clin Exp; 1992 Feb; 11(1):51-65. PubMed ID: 1555915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible role of nitric oxide in autoregulatory response in rat intracerebral arterioles.
    Kajita Y; Takayasu M; Dietrich HH; Dacey RG
    Neurosurgery; 1998 Apr; 42(4):834-41; discussion 841-2. PubMed ID: 9574648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thromboxane contributes to submaximal coronary dilation during myocardial ischemia.
    Eller BT; Brooks LA; Dellsperger KC
    Microcirculation; 1995 Aug; 2(2):165-72. PubMed ID: 7497168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adenosine in vasodilation of epimyocardial coronary microvessels during reduction in perfusion pressure.
    Komaru T; Lamping KG; Dellsperger KC
    J Cardiovasc Pharmacol; 1994 Sep; 24(3):434-42. PubMed ID: 7528300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.