These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 23350881)

  • 1. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of rear-wheel camber on the mechanical parameters produced during the wheelchair sprinting of handibasketball athletes.
    Faupin A; Campillo P; Weissland T; Gorce P; Thevenon A
    J Rehabil Res Dev; 2004 May; 41(3B):421-8. PubMed ID: 15543460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-velocity characteristics of upper limb extension during maximal wheelchair sprinting performed by healthy able-bodied females.
    Hintzy F; Tordi N; Predine E; Rouillon JD; Belli A
    J Sports Sci; 2003 Nov; 21(11):921-6. PubMed ID: 14626371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of wheel size on mobility performance in wheelchair athletes.
    Mason B; van der Woude L; Lenton JP; Goosey-Tolfrey V
    Int J Sports Med; 2012 Oct; 33(10):807-12. PubMed ID: 22592541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classification.
    Crespo-Ruiz BM; Del Ama-Espinosa AJ; Gil-Agudo AM
    Adapt Phys Activ Q; 2011 Apr; 28(2):157-72. PubMed ID: 21757787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation.
    Mason BS; Lemstra M; van der Woude LH; Vegter R; Goosey-Tolfrey VL
    Med Eng Phys; 2015 Apr; 37(4):392-9. PubMed ID: 25726151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of a novel square-profile hand rim on propulsion technique of wheelchair tennis players.
    de Groot S; Bos F; Koopman J; Hoekstra AE; Vegter RJK
    Appl Ergon; 2018 Sep; 71():38-44. PubMed ID: 29764612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program.
    Bergamini E; Morelli F; Marchetti F; Vannozzi G; Polidori L; Paradisi F; Traballesi M; Cappozzo A; Delussu AS
    Biomed Res Int; 2015; 2015():275965. PubMed ID: 26543852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP; van der Woude L; Fowler N; Goosey-Tolfrey V
    Int J Sports Med; 2009 Apr; 30(4):233-9. PubMed ID: 19199211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint performance and force application of tennis players during manual wheelchair propulsion with and without holding a tennis racket.
    Alberca I; Chénier F; Astier M; Watelain É; Vallier JM; Pradon D; Faupin A
    PLoS One; 2022; 17(2):e0263392. PubMed ID: 35120157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between functional classification levels and anaerobic performance of wheelchair basketball athletes.
    Molik B; Laskin JJ; Kosmol A; Skucas K; Bida U
    Res Q Exerc Sport; 2010 Mar; 81(1):69-73. PubMed ID: 20387400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in shoulder kinematics are associated with shoulder pain during wheelchair propulsion sprints.
    Briley SJ; Vegter RJK; Goosey-Tolfrey VL; Mason BS
    Scand J Med Sci Sports; 2022 Aug; 32(8):1213-1223. PubMed ID: 35620900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.