BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23350963)

  • 1. Chloride-dependent spectral tuning mechanism of L-group cone visual pigments.
    Yamashita T; Nakamura S; Tsutsui K; Morizumi T; Shichida Y
    Biochemistry; 2013 Feb; 52(7):1192-7. PubMed ID: 23350963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic analysis of the effect of chloride on the active intermediates of the primate L group cone visual pigment.
    Morizumi T; Sato K; Shichida Y
    Biochemistry; 2012 Dec; 51(50):10017-23. PubMed ID: 23176664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral tuning of rhodopsin and visual cone pigments.
    Zhou X; Sundholm D; WesoĊ‚owski TA; Kaila VR
    J Am Chem Soc; 2014 Feb; 136(7):2723-6. PubMed ID: 24422511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of spectral tuning in the mouse green cone pigment.
    Sun H; Macke JP; Nathans J
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8860-5. PubMed ID: 9238068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the stability of the human cone visual pigments.
    Ramon E; Mao X; Ridge KD
    Photochem Photobiol; 2009; 85(2):509-16. PubMed ID: 19192203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color tuning mechanism of human red and green visual pigments.
    Kakitani T; Beppu Y; Yamada A
    Photochem Photobiol; 1999 Oct; 70(4):686-93. PubMed ID: 10546565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
    Davies WI; Wilkie SE; Cowing JA; Hankins MW; Hunt DM
    Cell Mol Life Sci; 2012 Jul; 69(14):2455-64. PubMed ID: 22349213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
    Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y
    Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.
    Katayama K; Furutani Y; Iwaki M; Fukuda T; Imai H; Kandori H
    Phys Chem Chem Phys; 2018 Jan; 20(5):3381-3387. PubMed ID: 29297909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment.
    Fujimoto KJ; Minowa F; Nishina M; Nakamura S; Ohashi S; Katayama K; Kandori H; Yanai T
    J Phys Chem Lett; 2023 Feb; 14(7):1784-1793. PubMed ID: 36762971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of dim-light and color vision pigments.
    Yokoyama S
    Annu Rev Genomics Hum Genet; 2008; 9():259-82. PubMed ID: 18544031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.