These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23351088)

  • 21. A novel Surface Plasmon Resonance enhanced Total Internal Reflection Ellipsometric application: electrochemically grafted isophthalic acid nanofilm on gold surface.
    Üstündağ Z; Cağlayan MO; Güzel R; Pişkin E; Solak AO
    Analyst; 2011 Apr; 136(7):1464-71. PubMed ID: 21321683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor.
    Li F; Feng Y; Dong P; Yang L; Tang B
    Biosens Bioelectron; 2011 Jan; 26(5):1947-52. PubMed ID: 20880690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films.
    Kalyuzhny G; Vaskevich A; Schneeweiss MA; Rubinstein I
    Chemistry; 2002 Sep; 8(17):3849-57. PubMed ID: 12203279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ monitoring of atomic layer deposition in nanoporous thin films using ellipsometric porosimetry.
    Dendooven J; Devloo-Casier K; Levrau E; Van Hove R; Sree SP; Baklanov MR; Martens JA; Detavernier C
    Langmuir; 2012 Feb; 28(8):3852-9. PubMed ID: 22304361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of thin films of SiO(x) on gold substrates for surface plasmon resonance studies.
    Szunerits S; Boukherroub R
    Langmuir; 2006 Feb; 22(4):1660-3. PubMed ID: 16460088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques: average size, number density and morphology determination.
    Wang Y; Laborda E; Salter C; Crossley A; Compton RG
    Analyst; 2012 Oct; 137(20):4693-7. PubMed ID: 22946092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers.
    Godin M; Williams PJ; Tabard-Cossa V; Laroche O; Beaulieu LY; Lennox RB; Grütter P
    Langmuir; 2004 Aug; 20(17):7090-6. PubMed ID: 15301492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy.
    Takahashi Y; Hirano Y; Yasukawa T; Shiku H; Yamada H; Matsue T
    Langmuir; 2006 Dec; 22(25):10299-306. PubMed ID: 17128996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and immobilization of Ag(0) nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces.
    Noël JM; Zigah D; Simonet J; Hapiot P
    Langmuir; 2010 May; 26(10):7638-43. PubMed ID: 20163093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-situ SEM microchip setup for electrochemical experiments with water based solutions.
    Jensen E; Købler C; Jensen PS; Mølhave K
    Ultramicroscopy; 2013 Jun; 129():63-9. PubMed ID: 23608087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes.
    Eissa S; Tlili C; L'Hocine L; Zourob M
    Biosens Bioelectron; 2012; 38(1):308-13. PubMed ID: 22789151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrophenyl groups in diazonium-generated multilayered films: which are electrochemically responsive?
    Ceccato M; Nielsen LT; Iruthayaraj J; Hinge M; Pedersen SU; Daasbjerg K
    Langmuir; 2010 Jul; 26(13):10812-21. PubMed ID: 20411950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical immobilization of a benzylic film through the reduction of benzyl halide derivatives: deposition onto highly ordered pyrolytic graphite.
    Hui F; Noël JM; Poizot P; Hapiot P; Simonet J
    Langmuir; 2011 Apr; 27(8):5119-25. PubMed ID: 21413749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of nanostructured surfaces generated by reconstitution of the porin MspA from Mycobacterium smegmatis.
    Wörner M; Lioubashevski O; Basel MT; Niebler S; Gogritchiani E; Egner N; Heinz C; Hoferer J; Cipolloni M; Janik K; Katz E; Braun AM; Willner I; Niederweis M; Bossmann SH
    Small; 2007 Jun; 3(6):1084-97. PubMed ID: 17514767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion picture imaging of a nanometer-thick liquid film dewetting by ellipsometric microscopy with a submicrometer lateral resolution.
    Fukuzawa K; Yoshida T; Itoh S; Zhang H
    Langmuir; 2008 Oct; 24(20):11645-50. PubMed ID: 18823087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning electrochemical microscope observation of defects in a hexadecanethiol monolayer on gold with shear force-based tip-substrate positioning.
    Yamada H; Ogata M; Koike T
    Langmuir; 2006 Aug; 22(18):7923-7. PubMed ID: 16922585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy.
    Guay D; Stewart-Ornstein J; Zhang X; Hitchcock AP
    Anal Chem; 2005 Jun; 77(11):3479-87. PubMed ID: 15924378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically modified carbon and chromium surfaces for AFM imaging of double-strand DNA interaction with transposase protein.
    Esnault C; Chénais B; Casse N; Delorme N; Louarn G; Pilard JF
    Chemphyschem; 2013 Feb; 14(2):338-45. PubMed ID: 23292858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical depassivation for recovering Fe(0) reactivity by Cr(VI) removal with a permeable reactive barrier system.
    Lu X; Li M; Tang C; Feng C; Liu X
    J Hazard Mater; 2012 Apr; 213-214():355-60. PubMed ID: 22386999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.