BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23351382)

  • 1. Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis.
    Kim HL; Kim AH; Park MB; Lee SW; Park YS
    BMB Rep; 2013 Jan; 46(1):37-40. PubMed ID: 23351382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of residues that confer sugar selectivity to UDP-glycosyltransferase 3A (UGT3A) enzymes.
    Meech R; Rogers A; Zhuang L; Lewis BC; Miners JO; Mackenzie PI
    J Biol Chem; 2012 Jul; 287(29):24122-30. PubMed ID: 22621930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric glycosyltransferases for the generation of hybrid glycopeptides.
    Truman AW; Dias MV; Wu S; Blundell TL; Huang F; Spencer JB
    Chem Biol; 2009 Jun; 16(6):676-85. PubMed ID: 19549605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering flavonoid glycosyltransferases for enhanced catalytic efficiency and extended sugar-donor selectivity.
    Kim HS; Kim BG; Sung S; Kim M; Mok H; Chong Y; Ahn JH
    Planta; 2013 Oct; 238(4):683-93. PubMed ID: 23801300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved domains of glycosyltransferases.
    Kapitonov D; Yu RK
    Glycobiology; 1999 Oct; 9(10):961-78. PubMed ID: 10521532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced activity of Withania somnifera family-1 glycosyltransferase (UGT73A16) via mutagenesis.
    Singh S; Patel KA; Sonawane PD; Vishwakarma RK; Khan BM
    World J Microbiol Biotechnol; 2018 Sep; 34(10):150. PubMed ID: 30255239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.
    Hefner T; Stöckigt J
    Eur J Biochem; 2003 Feb; 270(3):533-8. PubMed ID: 12542702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity.
    Hoffmeister D; Ichinose K; Bechthold A
    Chem Biol; 2001 Jun; 8(6):557-67. PubMed ID: 11410375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants.
    Kohara A; Nakajima C; Yoshida S; Muranaka T
    Phytochemistry; 2007 Feb; 68(4):478-86. PubMed ID: 17204296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core.
    Lukose V; Luo L; Kozakov D; Vajda S; Allen KN; Imperiali B
    Biochemistry; 2015 Dec; 54(50):7326-34. PubMed ID: 26600273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broaden the sugar donor selectivity of blackberry glycosyltransferase UGT78H2 through residual substitutions.
    Chen Q; Liu X; Hu Y; Wang Y; Sun B; Chen T; Luo Y; Zhang Y; Li M; Liu Z; Wang X; Tang H
    Int J Biol Macromol; 2021 Jan; 166():277-287. PubMed ID: 33129904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of cyanobacterial pteridine glycosyltransferases that catalyze the transfer of either glucose or xylose to tetrahydrobiopterin.
    Lee YG; Kim AH; Park MB; Kim HL; Lee KH; Park YS
    Appl Environ Microbiol; 2010 Nov; 76(22):7658-61. PubMed ID: 20851980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues.
    Ouzzine M; Gulberti S; Levoin N; Netter P; Magdalou J; Fournel-Gigleux S
    J Biol Chem; 2002 Jul; 277(28):25439-45. PubMed ID: 11986319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of active site residues in glucosylceramide synthase. A nucleotide-binding catalytic motif conserved with processive beta-glycosyltransferases.
    Marks DL; Dominguez M; Wu K; Pagano RE
    J Biol Chem; 2001 Jul; 276(28):26492-8. PubMed ID: 11337504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single amino acid mutations of Medicago glycosyltransferase UGT85H2 enhance activity and impart reversibility.
    Modolo LV; Escamilla-Treviño LL; Dixon RA; Wang X
    FEBS Lett; 2009 Jun; 583(12):2131-5. PubMed ID: 19500551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases.
    Malik V; Black GW
    Adv Protein Chem Struct Biol; 2012; 87():87-115. PubMed ID: 22607753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation.
    Kubo A; Arai Y; Nagashima S; Yoshikawa T
    Arch Biochem Biophys; 2004 Sep; 429(2):198-203. PubMed ID: 15313223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180.
    Meng X; Pijning T; Dobruchowska JM; Gerwig GJ; Dijkhuizen L
    J Biol Chem; 2015 Dec; 290(50):30131-41. PubMed ID: 26507662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modeling of two plant UDP-dependent sugar-sugar glycosyltransferases reveals a conserved glutamic acid residue that is a hallmark for sugar acceptor recognition.
    Brandt W; Schulze E; Liberman-Aloni R; Bartelt R; Pienkny S; Carmeli-Weissberg M; Frydman A; Eyal Y
    J Struct Biol; 2021 Sep; 213(3):107777. PubMed ID: 34391905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Substrate Specificity and Catalytic Activity of the Pseudoglycosyltransferase VldE.
    Abuelizz HA; Mahmud T
    Chem Biol; 2015 Jun; 22(6):724-33. PubMed ID: 26051218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.