BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23351488)

  • 1. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation.
    Retamal J; Libuy J; Jiménez M; Delgado M; Besa C; Bugedo G; Bruhn A
    Crit Care; 2013 Jan; 17(1):R16. PubMed ID: 23351488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome.
    Bruhn A; Bugedo D; Riquelme F; Varas J; Retamal J; Besa C; Cabrera C; Bugedo G
    Minerva Anestesiol; 2011 Apr; 77(4):418-26. PubMed ID: 21483386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High PEEP levels are associated with overdistension and tidal recruitment/derecruitment in ARDS patients.
    Retamal J; Bugedo G; Larsson A; Bruhn A
    Acta Anaesthesiol Scand; 2015 Oct; 59(9):1161-9. PubMed ID: 26061818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective ventilation in a pig model of acute lung injury: timing is as important as pressure.
    Ramcharran H; Bates JHT; Satalin J; Blair S; Andrews PL; Gaver DP; Gatto LA; Wang G; Ghosh AJ; Robedee B; Vossler J; Habashi NM; Daphtary N; Kollisch-Singule M; Nieman GF
    J Appl Physiol (1985); 2022 Nov; 133(5):1093-1105. PubMed ID: 36135956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of inspiration to expiration ratio on cyclic recruitment and derecruitment of atelectasis in a saline lavage model of acute respiratory distress syndrome.
    Boehme S; Bentley AH; Hartmann EK; Chang S; Erdoes G; Prinzing A; Hagmann M; Baumgardner JE; Ullrich R; Markstaller K; David M
    Crit Care Med; 2015 Mar; 43(3):e65-74. PubMed ID: 25513783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic lung aeration and strain with positive end-expiratory pressure individualized to maximal compliance versus ARDSNet low-stretch strategy: a study in a surfactant depletion model of lung injury.
    Zeng C; Zhu M; Motta-Ribeiro G; Lagier D; Hinoshita T; Zang M; Grogg K; Winkler T; Vidal Melo MF
    Crit Care; 2023 Aug; 27(1):307. PubMed ID: 37537654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tidal Volume Lowering by Instrumental Dead Space Reduction in Brain-Injured ARDS Patients: Effects on Respiratory Mechanics, Gas Exchange, and Cerebral Hemodynamics.
    Pitoni S; D'Arrigo S; Grieco DL; Idone FA; Santantonio MT; Di Giannatale P; Ferrieri A; Natalini D; Eleuteri D; Jonson B; Antonelli M; Maggiore SM
    Neurocrit Care; 2021 Feb; 34(1):21-30. PubMed ID: 32323146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PReVENT--protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial.
    Simonis FD; Binnekade JM; Braber A; Gelissen HP; Heidt J; Horn J; Innemee G; de Jonge E; Juffermans NP; Spronk PE; Steuten LM; Tuinman PR; Vriends M; de Vreede G; de Wilde RB; Serpa Neto A; Gama de Abreu M; Pelosi P; Schultz MJ
    Trials; 2015 May; 16():226. PubMed ID: 26003545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS.
    Brochard L; Roudot-Thoraval F; Roupie E; Delclaux C; Chastre J; Fernandez-Mondéjar E; Clémenti E; Mancebo J; Factor P; Matamis D; Ranieri M; Blanch L; Rodi G; Mentec H; Dreyfuss D; Ferrer M; Brun-Buisson C; Tobin M; Lemaire F
    Am J Respir Crit Care Med; 1998 Dec; 158(6):1831-8. PubMed ID: 9847275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome.
    Fanelli V; Ranieri MV; Mancebo J; Moerer O; Quintel M; Morley S; Moran I; Parrilla F; Costamagna A; Gaudiosi M; Combes A
    Crit Care; 2016 Feb; 20():36. PubMed ID: 26861596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study.
    Godet T; Jabaudon M; Blondonnet R; Tremblay A; Audard J; Rieu B; Pereira B; Garcier JM; Futier E; Constantin JM
    Crit Care; 2018 Jan; 22(1):3. PubMed ID: 29325586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of end-inspiratory and end-expiratory pressures on alveolar recruitment and derecruitment in saline-washout-induced lung injury -- a computed tomography study.
    Luecke T; Roth H; Joachim A; Herrmann P; Deventer B; Weisser G; Pelosi P; Quintel M
    Acta Anaesthesiol Scand; 2004 Jan; 48(1):82-92. PubMed ID: 14674978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility and safety of ultra-low tidal volume ventilation without extracorporeal circulation in moderately severe and severe ARDS patients.
    Richard JC; Marque S; Gros A; Muller M; Prat G; Beduneau G; Quenot JP; Dellamonica J; Tapponnier R; Soum E; Bitker L; Richecoeur J;
    Intensive Care Med; 2019 Nov; 45(11):1590-1598. PubMed ID: 31549225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury.
    Zannin E; Dellaca RL; Kostic P; Pompilio PP; Larsson A; Pedotti A; Hedenstierna G; Frykholm P
    Crit Care; 2012 Nov; 16(6):R217. PubMed ID: 23134702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome.
    Cornejo RA; Díaz JC; Tobar EA; Bruhn AR; Ramos CA; González RA; Repetto CA; Romero CM; Gálvez LR; Llanos O; Arellano DH; Neira WR; Díaz GA; Zamorano AJ; Pereira GL
    Am J Respir Crit Care Med; 2013 Aug; 188(4):440-8. PubMed ID: 23348974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver.
    Richard JC; Maggiore SM; Jonson B; Mancebo J; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 2001 Jun; 163(7):1609-13. PubMed ID: 11401882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility and safety of low-flow extracorporeal CO
    Schmidt M; Jaber S; Zogheib E; Godet T; Capellier G; Combes A
    Crit Care; 2018 May; 22(1):122. PubMed ID: 29743094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients.
    Terragni PP; Rosboch GL; Lisi A; Viale AG; Ranieri VM
    Eur Respir J Suppl; 2003 Aug; 42():15s-21s. PubMed ID: 12945996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fifty Years of Research in ARDS. Vt Selection in Acute Respiratory Distress Syndrome.
    Sahetya SK; Mancebo J; Brower RG
    Am J Respir Crit Care Med; 2017 Dec; 196(12):1519-1525. PubMed ID: 28930639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal.
    Terragni PP; Del Sorbo L; Mascia L; Urbino R; Martin EL; Birocco A; Faggiano C; Quintel M; Gattinoni L; Ranieri VM
    Anesthesiology; 2009 Oct; 111(4):826-35. PubMed ID: 19741487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.