These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23351743)
1. Hetero-oligomerization and specificity changes of G protein-coupled purinergic receptors: novel insight into diversification of signal transduction. Suzuki T; Namba K; Mizuno N; Nakata H Methods Enzymol; 2013; 521():239-57. PubMed ID: 23351743 [TBL] [Abstract][Full Text] [Related]
2. [Hetero-oligomerization and Functional Interaction between Purinergic Receptors Expressed in Platelets to Regulate Platelet Shape Change]. Suzuki T Yakugaku Zasshi; 2015; 135(12):1335-40. PubMed ID: 26632148 [TBL] [Abstract][Full Text] [Related]
3. Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. Nakata H; Suzuki T; Namba K; Oyanagi K J Recept Signal Transduct Res; 2010 Oct; 30(5):337-46. PubMed ID: 20843271 [TBL] [Abstract][Full Text] [Related]
4. Biochemical assay of G protein-coupled receptor oligomerization: adenosine A1 and thromboxane A2 receptors form the novel functional hetero-oligomer. Mizuno N; Suzuki T; Kishimoto Y; Hirasawa N Methods Cell Biol; 2013; 117():213-27. PubMed ID: 24143980 [TBL] [Abstract][Full Text] [Related]
5. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Ramsay D; Kellett E; McVey M; Rees S; Milligan G Biochem J; 2002 Jul; 365(Pt 2):429-40. PubMed ID: 11971762 [TBL] [Abstract][Full Text] [Related]
6. Hetero-oligomerization between adenosine A₁ and thromboxane A₂ receptors and cellular signal transduction on stimulation with high and low concentrations of agonists for both receptors. Mizuno N; Suzuki T; Hirasawa N; Nakahata N Eur J Pharmacol; 2012 Feb; 677(1-3):5-14. PubMed ID: 22200626 [TBL] [Abstract][Full Text] [Related]
7. Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. Harikumar KG; Morfis MM; Lisenbee CS; Sexton PM; Miller LJ Mol Pharmacol; 2006 Jan; 69(1):363-73. PubMed ID: 16244179 [TBL] [Abstract][Full Text] [Related]
8. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Terrillon S; Durroux T; Mouillac B; Breit A; Ayoub MA; Taulan M; Jockers R; Barberis C; Bouvier M Mol Endocrinol; 2003 Apr; 17(4):677-91. PubMed ID: 12554793 [TBL] [Abstract][Full Text] [Related]
9. Purinergic-receptor oligomerization: implications for neural functions in the central nervous system. Nakata H; Yoshioka K; Kamiya T Neurotox Res; 2004; 6(4):291-7. PubMed ID: 15545012 [TBL] [Abstract][Full Text] [Related]
10. G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Breitwieser GE Circ Res; 2004 Jan; 94(1):17-27. PubMed ID: 14715532 [TBL] [Abstract][Full Text] [Related]
11. Detection of G protein-coupled receptor (GPCR) dimerization by coimmunoprecipitation. Skieterska K; Duchou J; Lintermans B; Van Craenenbroeck K Methods Cell Biol; 2013; 117():323-40. PubMed ID: 24143985 [TBL] [Abstract][Full Text] [Related]
12. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Wang D; Sun X; Bohn LM; Sadée W Mol Pharmacol; 2005 Jun; 67(6):2173-84. PubMed ID: 15778451 [TBL] [Abstract][Full Text] [Related]
13. Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization. Achour L; Kamal M; Jockers R; Marullo S Methods Mol Biol; 2011; 756():183-200. PubMed ID: 21870226 [TBL] [Abstract][Full Text] [Related]
14. Functions of heteromeric association between adenosine and P2Y receptors. Nakata H; Yoshioka K; Kamiya T; Tsuga H; Oyanagi K J Mol Neurosci; 2005; 26(2-3):233-8. PubMed ID: 16012196 [TBL] [Abstract][Full Text] [Related]
15. Formation of oligomers by G protein-coupled receptors. Gazi L; López-Giménez JF; Strange PG Curr Opin Drug Discov Devel; 2002 Sep; 5(5):756-63. PubMed ID: 12630296 [TBL] [Abstract][Full Text] [Related]
16. Functional interaction between purinergic receptors: effect of ligands for A2A and P2Y12 receptors on P2Y1 receptor function. Suzuki T; Obara Y; Moriya T; Nakata H; Nakahata N FEBS Lett; 2011 Dec; 585(24):3978-84. PubMed ID: 22079667 [TBL] [Abstract][Full Text] [Related]
17. Heterodimerization of human apelin and kappa opioid receptors: roles in signal transduction. Li Y; Chen J; Bai B; Du H; Liu Y; Liu H Cell Signal; 2012 May; 24(5):991-1001. PubMed ID: 22200678 [TBL] [Abstract][Full Text] [Related]
18. Oligomerization of G protein-coupled receptors: biochemical and biophysical methods. Kaczor AA; Selent J Curr Med Chem; 2011; 18(30):4606-34. PubMed ID: 21864280 [TBL] [Abstract][Full Text] [Related]
19. Homo- and hetero-dimeric complex formations of the human oxytocin receptor. Devost D; Zingg HH J Neuroendocrinol; 2004 Apr; 16(4):372-7. PubMed ID: 15089977 [TBL] [Abstract][Full Text] [Related]
20. Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Wnorowski A; Jozwiak K Cell Signal; 2014 Oct; 26(10):2259-65. PubMed ID: 25049076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]