These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 23352144)

  • 21. Impact of manganese and heme on biofilm formation of Bacillus cereus food isolates.
    Hussain MS; Kwon M; Oh DH
    PLoS One; 2018; 13(7):e0200958. PubMed ID: 30048488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms.
    Caro-Astorga J; Pérez-García A; de Vicente A; Romero D
    Front Microbiol; 2014; 5():745. PubMed ID: 25628606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis.
    Ostrowski A; Mehert A; Prescott A; Kiley TB; Stanley-Wall NR
    J Bacteriol; 2011 Sep; 193(18):4821-31. PubMed ID: 21742882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weaponizing volatiles to inhibit competitor biofilms from a distance.
    Hou Q; Keren-Paz A; Korenblum E; Oved R; Malitsky S; Kolodkin-Gal I
    NPJ Biofilms Microbiomes; 2021 Jan; 7(1):2. PubMed ID: 33402677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
    Yannarell SM; Grandchamp GM; Chen SY; Daniels KE; Shank EA
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30833350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative modes of biofilm formation by plant-associated Bacillus cereus.
    Gao T; Foulston L; Chai Y; Wang Q; Losick R
    Microbiologyopen; 2015 Jun; 4(3):452-64. PubMed ID: 25828975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.
    Gallegos-Monterrosa R; Kankel S; Götze S; Barnett R; Stallforth P; Kovács ÁT
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28583948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CdTe-TiO2 nanocomposite: an impeder of bacterial growth and biofilm.
    Gholap H; Patil R; Yadav P; Banpurkar A; Ogale S; Gade W
    Nanotechnology; 2013 May; 24(19):195101. PubMed ID: 23579550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria.
    Mhatre E; Monterrosa RG; Kovács AT
    J Basic Microbiol; 2014 Jul; 54(7):616-32. PubMed ID: 24771632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis.
    Driks A
    Mol Microbiol; 2011 Jun; 80(5):1133-6. PubMed ID: 21488983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.
    Kayumov AR; Khakimullina EN; Sharafutdinov IS; Trizna EY; Latypova LZ; Thi Lien H; Margulis AB; Bogachev MI; Kurbangalieva AR
    J Antibiot (Tokyo); 2015 May; 68(5):297-301. PubMed ID: 25335695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.
    Faille C; Jullien C; Fontaine F; Bellon-Fontaine MN; Slomianny C; Benezech T
    Can J Microbiol; 2002 Aug; 48(8):728-38. PubMed ID: 12381029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine.
    Hassanov T; Karunker I; Steinberg N; Erez A; Kolodkin-Gal I
    Sci Rep; 2018 May; 8(1):7097. PubMed ID: 29740028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition and disintegration of
    Verma N; Srivastava S; Malik R; Goyal P; Pandey J
    J Biomol Struct Dyn; 2023 Apr; 41(6):2431-2447. PubMed ID: 35098894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting multiple biofilm pathways.
    Hett EC; Hung DT
    Chem Biol; 2009 Dec; 16(12):1216-8. PubMed ID: 20064430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biopolymer-enriched B. subtilis NCIB 3610 biofilms exhibit increased erosion resistance.
    Hayta EN; Lieleg O
    Biomater Sci; 2019 Nov; 7(11):4675-4686. PubMed ID: 31475697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins.
    Karunakaran E; Biggs CA
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1161-75. PubMed ID: 20936277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spo0A-sinI-sinR Regulatory Circuit Plays an Essential Role in Biofilm Formation, Nematicidal Activities, and Plant Protection in Bacillus cereus AR156.
    Xu S; Yang N; Zheng S; Yan F; Jiang C; Yu Y; Guo J; Chai Y; Chen Y
    Mol Plant Microbe Interact; 2017 Aug; 30(8):603-619. PubMed ID: 28430084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The YmdB protein regulates biofilm formation dependent on the repressor SinR in Bacillus cereus 0-9.
    Zhang J; Wang H; Xie T; Huang Q; Xiong X; Liu Q; Wang G
    World J Microbiol Biotechnol; 2020 Oct; 36(11):165. PubMed ID: 33000364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.