These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23352553)

  • 21. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory.
    Li J; Cao Y; Ying Y; Li S
    PLoS One; 2016; 11(12):e0167587. PubMed ID: 28036329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of Intelligent Fault Diagnosis Technique of Rotary Machine Element Bearing: A Machine Learning Approach.
    Saha DK; Hoque ME; Badihi H
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-fault diagnosis method for sensor systems based on principle component analysis.
    Zhu D; Bai J; Yang SX
    Sensors (Basel); 2010; 10(1):241-53. PubMed ID: 22315537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DCNN for condition monitoring and fault detection in rotating machines and its contribution to the understanding of machine nature.
    González-Muñiz A; Díaz I; Cuadrado AA
    Heliyon; 2020 Feb; 6(2):e03395. PubMed ID: 32090183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automated damage identification technique based on vibration and wave propagation data.
    Mal A; Banerjee S; Ricci F
    Philos Trans A Math Phys Eng Sci; 2007 Feb; 365(1851):479-91. PubMed ID: 17255048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis.
    Sohaib M; Kim CH; Kim JM
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting invariable fault features of rotating machines with multi-ICA networks.
    Jiao WD; Yang SX; Wu ZT
    J Zhejiang Univ Sci; 2003; 4(5):595-601. PubMed ID: 12958721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification.
    Yan Z; Wang Z; Xie H
    Comput Methods Programs Biomed; 2008 Jun; 90(3):275-84. PubMed ID: 18295367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A weighted multi-scale morphological gradient filter for rolling element bearing fault detection.
    Li B; Zhang PL; Wang ZJ; Mi SS; Liu DS
    ISA Trans; 2011 Oct; 50(4):599-608. PubMed ID: 21723552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals.
    Altaf M; Akram T; Khan MA; Iqbal M; Ch MMI; Hsu CH
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real time automatic detection of bearing fault in induction machine using kurtogram analysis.
    Tafinine F; Mokrani K
    J Acoust Soc Am; 2012 Nov; 132(5):EL405-10. PubMed ID: 23145702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis of broken-bars fault in induction machines using higher order spectral analysis.
    Saidi L; Fnaiech F; Henao H; Capolino GA; Cirrincione G
    ISA Trans; 2013 Jan; 52(1):140-8. PubMed ID: 22999985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings.
    Saucedo-Dorantes JJ; Arellano-Espitia F; Delgado-Prieto M; Osornio-Rios RA
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training a support vector machine in the primal.
    Chapelle O
    Neural Comput; 2007 May; 19(5):1155-78. PubMed ID: 17381263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-efficient SVM learning control system for biped walking robots.
    Wang L; Liu Z; Chen CL; Zhang Y; Lee S; Chen X
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):831-7. PubMed ID: 24808432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved wrapper-based feature selection method for machinery fault diagnosis.
    Hui KH; Ooi CS; Lim MH; Leong MS; Al-Obaidi SM
    PLoS One; 2017; 12(12):e0189143. PubMed ID: 29261689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Explainable AI-Based Fault Diagnosis Model for Bearings.
    Hasan MJ; Sohaib M; Kim JM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34199163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.