These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 23352811)
1. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures. Ng JH; Kumar V; Muratani M; Kraus P; Yeo JC; Yaw LP; Xue K; Lufkin T; Prabhakar S; Ng HH Dev Cell; 2013 Feb; 24(3):324-33. PubMed ID: 23352811 [TBL] [Abstract][Full Text] [Related]
2. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
3. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocyte-derived dendritic cells in different environments. Huang Y; Min S; Lui Y; Sun J; Su X; Liu Y; Zhang Y; Han D; Che Y; Zhao C; Ma B; Yang R Genes Immun; 2012 Jun; 13(4):311-20. PubMed ID: 22278394 [TBL] [Abstract][Full Text] [Related]
4. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Liu X; Wang C; Liu W; Li J; Li C; Kou X; Chen J; Zhao Y; Gao H; Wang H; Zhang Y; Gao Y; Gao S Nature; 2016 Sep; 537(7621):558-562. PubMed ID: 27626379 [TBL] [Abstract][Full Text] [Related]
5. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Wang Y; Wysocka J; Perlin JR; Leonelli L; Allis CD; Coonrod SA Cold Spring Harb Symp Quant Biol; 2004; 69():161-9. PubMed ID: 16117646 [No Abstract] [Full Text] [Related]
6. Epigenetic modulation by TFII-I during embryonic stem cell differentiation. Bayarsaihan D; Makeyev AV; Enkhmandakh B J Cell Biochem; 2012 Oct; 113(10):3056-60. PubMed ID: 22628223 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq. Hitchler MJ; Rice JC Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Suzuki H; Takatsuka S; Akashi H; Yamamoto E; Nojima M; Maruyama R; Kai M; Yamano HO; Sasaki Y; Tokino T; Shinomura Y; Imai K; Toyota M Cancer Res; 2011 Sep; 71(17):5646-58. PubMed ID: 21734013 [TBL] [Abstract][Full Text] [Related]
9. High-resolution profiling of histone methylations in the human genome. Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414 [TBL] [Abstract][Full Text] [Related]
10. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. Kurup JT; Kidder BL J Biol Chem; 2018 Sep; 293(39):15120-15135. PubMed ID: 30115682 [TBL] [Abstract][Full Text] [Related]
11. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. King AD; Huang K; Rubbi L; Liu S; Wang CY; Wang Y; Pellegrini M; Fan G Cell Rep; 2016 Sep; 17(1):289-302. PubMed ID: 27681438 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters. Kumar V; Rayan NA; Muratani M; Lim S; Elanggovan B; Xin L; Lu T; Makhija H; Poschmann J; Lufkin T; Ng HH; Prabhakar S Genome Res; 2016 May; 26(5):612-23. PubMed ID: 26957309 [TBL] [Abstract][Full Text] [Related]
13. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell. Orlov Y; Xu H; Afonnikov D; Lim B; Heng JC; Yuan P; Chen M; Yan J; Clarke N; Orlova N; Huss M; Gunbin K; Podkolodnyy N; Ng HH J Integr Bioinform; 2012 Sep; 9(2):211. PubMed ID: 22987856 [TBL] [Abstract][Full Text] [Related]
14. The genomic landscape of histone modifications in human T cells. Roh TY; Cuddapah S; Cui K; Zhao K Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15782-7. PubMed ID: 17043231 [TBL] [Abstract][Full Text] [Related]
15. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603 [TBL] [Abstract][Full Text] [Related]
16. Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain. Han Y; Han D; Yan Z; Boyd-Kirkup JD; Green CD; Khaitovich P; Han JD Aging Cell; 2012 Dec; 11(6):1055-64. PubMed ID: 22978322 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Ikegami K; Iwatani M; Suzuki M; Tachibana M; Shinkai Y; Tanaka S; Greally JM; Yagi S; Hattori N; Shiota K Genes Cells; 2007 Jan; 12(1):1-11. PubMed ID: 17212651 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells. Poletti V; Delli Carri A; Malagoli Tagliazucchi G; Faedo A; Petiti L; Mazza EM; Peano C; De Bellis G; Bicciato S; Miccio A; Cattaneo E; Mavilio F PLoS One; 2015; 10(5):e0126590. PubMed ID: 25978676 [TBL] [Abstract][Full Text] [Related]
19. An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Xu H; Wei CL; Lin F; Sung WK Bioinformatics; 2008 Oct; 24(20):2344-9. PubMed ID: 18667444 [TBL] [Abstract][Full Text] [Related]