These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 23352904)
1. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential. Testiati E; Parinet J; Massiani C; Laffont-Schwob I; Rabier J; Pfeifer HR; Lenoble V; Masotti V; Prudent P J Hazard Mater; 2013 Mar; 248-249():131-41. PubMed ID: 23352904 [TBL] [Abstract][Full Text] [Related]
2. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: human exposure risk. Affholder MC; Prudent P; Masotti V; Coulomb B; Rabier J; Nguyen-The B; Laffont-Schwob I Sci Total Environ; 2013 Jun; 454-455():219-29. PubMed ID: 23542674 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
5. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. Gomes P; Valente T; Pamplona J; Braga MA; Pissarra J; Gil JA; de la Torre ML Int J Phytoremediation; 2014; 16(7-12):1087-103. PubMed ID: 24933904 [TBL] [Abstract][Full Text] [Related]
6. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
7. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Komárek M; Chrastný V; Stíchová J Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793 [TBL] [Abstract][Full Text] [Related]
8. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488 [TBL] [Abstract][Full Text] [Related]
9. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
10. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. Heckenroth A; Rabier J; Dutoit T; Torre F; Prudent P; Laffont-Schwob I J Environ Manage; 2016 Dec; 183(Pt 3):850-863. PubMed ID: 27665125 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Lorestani B; Yousefi N; Cheraghi M; Farmany A Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813 [TBL] [Abstract][Full Text] [Related]
12. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). Antonijević MM; Dimitrijević MD; Milić SM; Nujkić MM J Environ Monit; 2012 Mar; 14(3):866-77. PubMed ID: 22314513 [TBL] [Abstract][Full Text] [Related]
13. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
14. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337 [TBL] [Abstract][Full Text] [Related]
15. Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Shahid M; Arshad M; Kaemmerer M; Pinelli E; Probst A; Baque D; Pradere P; Dumat C Int J Phytoremediation; 2012; 14(5):493-505. PubMed ID: 22567727 [TBL] [Abstract][Full Text] [Related]
16. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. da Silva WR; da Silva FBV; Araújo PRM; do Nascimento CWA Ecotoxicol Environ Saf; 2017 Oct; 144():522-530. PubMed ID: 28675866 [TBL] [Abstract][Full Text] [Related]
17. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Massa N; Andreucci F; Poli M; Aceto M; Barbato R; Berta G Ecotoxicol Environ Saf; 2010 Nov; 73(8):1988-97. PubMed ID: 20884049 [TBL] [Abstract][Full Text] [Related]
18. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
19. Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. Pignattelli S; Colzi I; Buccianti A; Cecchi L; Arnetoli M; Monnanni R; Gabbrielli R; Gonnelli C J Hazard Mater; 2012 Aug; 227-228():362-9. PubMed ID: 22673060 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]