These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 23353115)

  • 21. Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD.
    Silvetti M; Wiersema JR; Sonuga-Barke E; Verguts T
    Neural Netw; 2013 Oct; 46():199-209. PubMed ID: 23811383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine ramps are a consequence of reward prediction errors.
    Gershman SJ
    Neural Comput; 2014 Mar; 26(3):467-71. PubMed ID: 24320851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling functions of striatal dopamine modulation in learning and planning.
    Suri RE; Bargas J; Arbib MA
    Neuroscience; 2001; 103(1):65-85. PubMed ID: 11311788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
    Kato A; Morita K
    PLoS Comput Biol; 2016 Oct; 12(10):e1005145. PubMed ID: 27736881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Reinforcement learning by striatum].
    Kunisato Y; Okada G; Okamoto Y
    Brain Nerve; 2009 Apr; 61(4):405-11. PubMed ID: 19378810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Addiction as a computational process gone awry.
    Redish AD
    Science; 2004 Dec; 306(5703):1944-7. PubMed ID: 15591205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
    Diederen KM; Ziauddeen H; Vestergaard MD; Spencer T; Schultz W; Fletcher PC
    J Neurosci; 2017 Feb; 37(7):1708-1720. PubMed ID: 28202786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term reward prediction in TD models of the dopamine system.
    Daw ND; Touretzky DS
    Neural Comput; 2002 Nov; 14(11):2567-83. PubMed ID: 12433290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of learning-related dopamine signals in addiction vulnerability.
    Huys QJ; Tobler PN; Hasler G; Flagel SB
    Prog Brain Res; 2014; 211():31-77. PubMed ID: 24968776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What is reinforced by phasic dopamine signals?
    Redgrave P; Gurney K; Reynolds J
    Brain Res Rev; 2008 Aug; 58(2):322-39. PubMed ID: 18055018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine errors drive excitatory and inhibitory components of backward conditioning in an outcome-specific manner.
    Seitz BM; Hoang IB; DiFazio LE; Blaisdell AP; Sharpe MJ
    Curr Biol; 2022 Jul; 32(14):3210-3218.e3. PubMed ID: 35752165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.
    Moustafa AA; Gluck MA
    J Cogn Neurosci; 2011 Jan; 23(1):151-67. PubMed ID: 20044893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An imperfect dopaminergic error signal can drive temporal-difference learning.
    Potjans W; Diesmann M; Morrison A
    PLoS Comput Biol; 2011 May; 7(5):e1001133. PubMed ID: 21589888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions.
    Kahnt T; Park SQ; Cohen MX; Beck A; Heinz A; Wrase J
    J Cogn Neurosci; 2009 Jul; 21(7):1332-45. PubMed ID: 18752410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction error as a linear function of reward probability is coded in human nucleus accumbens.
    Abler B; Walter H; Erk S; Kammerer H; Spitzer M
    Neuroimage; 2006 Jun; 31(2):790-5. PubMed ID: 16487726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior.
    Morita K; Morishima M; Sakai K; Kawaguchi Y
    J Neurosci; 2013 May; 33(20):8866-90. PubMed ID: 23678129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural control of dopamine neurotransmission: implications for reinforcement learning.
    Aggarwal M; Hyland BI; Wickens JR
    Eur J Neurosci; 2012 Apr; 35(7):1115-23. PubMed ID: 22487041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can the apparent adaptation of dopamine neurons' mismatch sensitivities be reconciled with their computation of reward prediction errors?
    Tan CO; Anderson E; Dranias M; Bullock D
    Neurosci Lett; 2008 Jun; 438(1):14-6. PubMed ID: 18482798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.