These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608 [TBL] [Abstract][Full Text] [Related]
3. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810 [TBL] [Abstract][Full Text] [Related]
4. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Chen L; Zhang J; Lee J; Chen WN Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906 [TBL] [Abstract][Full Text] [Related]
6. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Zhang Y; Su M; Qin N; Nielsen J; Liu Z Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960 [TBL] [Abstract][Full Text] [Related]
7. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454 [TBL] [Abstract][Full Text] [Related]
8. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Lian J; Si T; Nair NU; Zhao H Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351 [TBL] [Abstract][Full Text] [Related]
9. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. van Rossum HM; Kozak BU; Pronk JT; van Maris AJA Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. Lian J; Zhao H J Ind Microbiol Biotechnol; 2015 Mar; 42(3):437-51. PubMed ID: 25306882 [TBL] [Abstract][Full Text] [Related]
11. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499 [TBL] [Abstract][Full Text] [Related]
12. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E; Kayser O PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782 [TBL] [Abstract][Full Text] [Related]
13. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Milke L; Marienhagen J Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515 [TBL] [Abstract][Full Text] [Related]
14. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering. Lian J; Zhao H ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359 [TBL] [Abstract][Full Text] [Related]
15. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Wattanachaisaereekul S; Lantz AE; Nielsen ML; Nielsen J Metab Eng; 2008 Sep; 10(5):246-54. PubMed ID: 18555717 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates. Wang J; Xu R; Wang R; Haque ME; Liu A Biosci Biotechnol Biochem; 2016 Jun; 80(6):1214-22. PubMed ID: 26865376 [TBL] [Abstract][Full Text] [Related]
17. Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Li X; Guo D; Cheng Y; Zhu F; Deng Z; Liu T Biotechnol Bioeng; 2014 Sep; 111(9):1841-52. PubMed ID: 24752690 [TBL] [Abstract][Full Text] [Related]
18. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis. Milke L; Ferreira P; Kallscheuer N; Braga A; Vogt M; Kappelmann J; Oliveira J; Silva AR; Rocha I; Bott M; Noack S; Faria N; Marienhagen J Biotechnol Bioeng; 2019 Jun; 116(6):1380-1391. PubMed ID: 30684355 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Runguphan W; Keasling JD Metab Eng; 2014 Jan; 21():103-13. PubMed ID: 23899824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]