These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23353577)

  • 1. CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000.
    Filiatrault MJ; Stodghill PV; Wilson J; Butcher BG; Chen H; Myers CR; Cartinhour SW
    RNA Biol; 2013 Feb; 10(2):245-55. PubMed ID: 23353577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.
    Moreno R; Fonseca P; Rojo F
    Mol Microbiol; 2012 Jan; 83(1):24-40. PubMed ID: 22053874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida.
    García-Mauriño SM; Pérez-Martínez I; Amador CI; Canosa I; Santero E
    Mol Microbiol; 2013 Jul; 89(1):189-205. PubMed ID: 23692431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida.
    Barroso R; García-Mauriño SM; Tomás-Gallardo L; Andújar E; Pérez-Alegre M; Santero E; Canosa I
    PLoS One; 2018; 13(12):e0209191. PubMed ID: 30557364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression.
    Fonseca P; Moreno R; Rojo F
    Environ Microbiol; 2013 Jan; 15(1):24-35. PubMed ID: 22360597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of an rsmX co-variance model and identification of five rsmX non-coding RNAs in Pseudomonas syringae pv. tomato DC3000.
    Moll S; Schneider DJ; Stodghill P; Myers CR; Cartinhour SW; Filiatrault MJ
    RNA Biol; 2010; 7(5):508-16. PubMed ID: 21060253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.
    Hernández-Arranz S; Sánchez-Hevia D; Rojo F; Moreno R
    RNA; 2016 Dec; 22(12):1902-1917. PubMed ID: 27777366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.
    La Rosa R; Nogales J; Rojo F
    Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.
    Sonnleitner E; Abdou L; Haas D
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21866-71. PubMed ID: 20080802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical management of carbon sources is regulated similarly by the CbrA/B systems in Pseudomonas aeruginosa and Pseudomonas putida.
    Valentini M; García-Mauriño SM; Pérez-Martínez I; Santero E; Canosa I; Lapouge K
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2243-2252. PubMed ID: 25031426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the sRNAs CrcZ and CrcY modulate the strength of carbon catabolite repression under diazotrophic or non-diazotrophic growing conditions in Azotobacter vinelandii.
    Martínez-Valenzuela M; Guzmán J; Moreno S; Ahumada-Manuel CL; Espín G; Núñez C
    PLoS One; 2018; 13(12):e0208975. PubMed ID: 30543677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25.
    Liu Y; Gokhale CS; Rainey PB; Zhang XX
    Mol Microbiol; 2017 Aug; 105(4):589-605. PubMed ID: 28557013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
    Bharwad K; Rajkumar S
    World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida.
    Sánchez-Hevia DL; Yuste L; Moreno R; Rojo F
    Environ Microbiol; 2018 Oct; 20(10):3484-3503. PubMed ID: 29708644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 16. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
    Abdou L; Chou HT; Haas D; Lu CD
    J Bacteriol; 2011 Jun; 193(11):2784-92. PubMed ID: 21478360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the expression and functionality of the
    Ferreiro MD; Behrmann LV; Corral A; Nogales J; Gallegos MT
    RNA Biol; 2021 Nov; 18(11):1818-1833. PubMed ID: 33406981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast.
    Rico A; Preston GM
    Mol Plant Microbe Interact; 2008 Feb; 21(2):269-82. PubMed ID: 18184070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000.
    Park SH; Bao Z; Butcher BG; D'Amico K; Xu Y; Stodghill P; Schneider DJ; Cartinhour S; Filiatrault MJ
    Microbiology (Reading); 2014 May; 160(Pt 5):941-953. PubMed ID: 24600027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation.
    Sonnleitner E; Prindl K; Bläsi U
    PLoS One; 2017; 12(7):e0180887. PubMed ID: 28686727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.