BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23353634)

  • 1. Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst.
    Choudhary V; Caratzoulas S; Vlachos DG
    Carbohydr Res; 2013 Mar; 368():89-95. PubMed ID: 23353634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose isomerization with zeolites in a two-step alcohol-water process.
    Paniagua M; Saravanamurugan S; Melian-Rodriguez M; Melero JA; Riisager A
    ChemSusChem; 2015 Mar; 8(6):1088-94. PubMed ID: 25703506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.
    Assary RS; Curtiss LA
    J Phys Chem A; 2011 Aug; 115(31):8754-60. PubMed ID: 21707087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose.
    Rao K; Chelikani S; Relue P; Varanasi S
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):101-17. PubMed ID: 18421591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen location in stages of an enzyme-catalyzed reaction: time-of-flight neutron structure of D-xylose isomerase with bound D-xylulose.
    Kovalevsky AY; Katz AK; Carrell HL; Hanson L; Mustyakimov M; Fisher SZ; Coates L; Schoenborn BP; Bunick GJ; Glusker JP; Langan P
    Biochemistry; 2008 Jul; 47(29):7595-7. PubMed ID: 18578508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of L-xylose from L-xylulose using Escherichia coli L-fucose isomerase.
    Usvalampi A; Turunen O; Valjakka J; Pastinen O; Leisola M; Nyyssölä A
    Enzyme Microb Technol; 2012 Jan; 50(1):71-6. PubMed ID: 22133443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose.
    Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL
    Proteins; 1991; 9(3):153-73. PubMed ID: 2006134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dibutylsilylene-pentose bis-chelates: on the glycoses' binding sites for strongly Lewis-acidic centres.
    Schulten J; Klüfers P
    Carbohydr Res; 2011 Sep; 346(13):1767-75. PubMed ID: 21782160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Isomerization of Biomass-Derived Aldoses: A Review.
    Delidovich I; Palkovits R
    ChemSusChem; 2016 Mar; 9(6):547-61. PubMed ID: 26948404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modelling of xylose isomerase catalysis: the role of electrostatics and charge transfer to metals.
    Fuxreiter M; Farkas O; Náray-Szabó G
    Protein Eng; 1995 Sep; 8(9):925-33. PubMed ID: 8746730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a recombinant thermostable D-lyxose isomerase from Dictyoglomus turgidum that produces D-lyxose from D-xylulose.
    Choi JG; Hong SH; Kim YS; Kim KR; Oh DK
    Biotechnol Lett; 2012 Jun; 34(6):1079-85. PubMed ID: 22350292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study on the initial reactions of d-Xylose and d-Xylulose dehydration to furfural.
    Fang X; Andersson MP; Wang Z; Song W; Li S
    Carbohydr Res; 2022 Jan; 511():108463. PubMed ID: 34741878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    ChemSusChem; 2013 May; 6(5):831-9. PubMed ID: 23554234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media.
    Choudhary V; Pinar AB; Lobo RF; Vlachos DG; Sandler SI
    ChemSusChem; 2013 Dec; 6(12):2369-76. PubMed ID: 24106178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective group-free synthesis of 3,4-dihydroxytetrahydrofurans from carbohydrates: formal total synthesis of sphydrofuran.
    van Kalkeren HA; van Rootselaar S; Haasjes FS; Rutjes FP; van Delft FL
    Carbohydr Res; 2012 Nov; 362():30-7. PubMed ID: 23069485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydrogen bonding vs metal-σ interaction in complexes between H2 and metal hydride.
    Alkorta I; Elguero J; Solimannejad M; Grabowski SJ
    J Phys Chem A; 2011 Jan; 115(2):201-10. PubMed ID: 21155597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study.
    Yang G; Pidko EA; Hensen EJ
    ChemSusChem; 2013 Sep; 6(9):1688-96. PubMed ID: 23943294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.