These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 23353636)
1. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge. Lewis J; Burman J; Edlund C; Simonsson L; Berglind R; Leffler P; Qvarfort U; Thiboutot S; Ampleman G; Meuken D; Duvalois W; Martel R; Sjöström J J Contam Hydrol; 2013 Mar; 146():8-15. PubMed ID: 23353636 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study. Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320 [TBL] [Abstract][Full Text] [Related]
3. Highly parameterized inversion of groundwater reactive transport for a complex field site. Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244 [TBL] [Abstract][Full Text] [Related]
4. Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. Yaron B; Dror I; Berkowitz B Chemosphere; 2008 Apr; 71(8):1409-21. PubMed ID: 18177916 [TBL] [Abstract][Full Text] [Related]
5. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119 [TBL] [Abstract][Full Text] [Related]
6. Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events. Sultana R; Johnson RH; Tigar AD; Wahl TJ; Meurer CE; Hoss KN; Xu S; Paradis CJ J Contam Hydrol; 2024 Jul; 265():104391. PubMed ID: 38936239 [TBL] [Abstract][Full Text] [Related]
7. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction. Goltz MN; Huang J; Close ME; Flintoft MJ; Pang L J Contam Hydrol; 2008 Sep; 100(3-4):127-36. PubMed ID: 18674844 [TBL] [Abstract][Full Text] [Related]
8. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Babiker IS; Mohamed MA; Hiyama T; Kato K Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534 [TBL] [Abstract][Full Text] [Related]
9. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan. Ni CF; Li WC; Hsu SM; Lee IH; Lin CP Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403 [TBL] [Abstract][Full Text] [Related]
10. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey. Sengör SS; Unlü K J Contam Hydrol; 2013 Jul; 150():77-92. PubMed ID: 23680827 [TBL] [Abstract][Full Text] [Related]
11. Numerical investigation of the impact of ethanol on flow in the vadose zone. Sciortino A; Leij FJ Ground Water; 2012; 50(6):883-94. PubMed ID: 22268725 [TBL] [Abstract][Full Text] [Related]
12. Transport of simazine in unsaturated sandy soil and predictions of its leaching under hypothetical field conditions. Suárez F; Bachmann J; Muñoz JF; Ortiz C; Tyler SW; Alister C; Kogan M J Contam Hydrol; 2007 Dec; 94(3-4):166-77. PubMed ID: 17604874 [TBL] [Abstract][Full Text] [Related]
13. Numerical study of variable-density flow and transport in unsaturated-saturated porous media. Liu Y; Kuang X; Jiao JJ; Li J J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086 [TBL] [Abstract][Full Text] [Related]
14. Numerical modeling of saline water transport in the lower Nam Kam Basin, Amphoe That Phanom, Changwat Nakhon Phanom, Thailand. Srisuk K; Sriboonlue V; Buaphan C; Archvichai L; Youngme W; Satarak P; Jaruchaikul S Water Sci Technol; 2001; 44(7):157-64. PubMed ID: 11724482 [TBL] [Abstract][Full Text] [Related]
15. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Parker BL; Cherry JA; Chapman SW J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493 [TBL] [Abstract][Full Text] [Related]
16. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. Rein A; Bauer S; Dietrich P; Beyer C J Contam Hydrol; 2009 Sep; 108(3-4):118-33. PubMed ID: 19682766 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well. Johnson RL; Simon MA J Contam Hydrol; 2007 Aug; 93(1-4):188-202. PubMed ID: 17428573 [TBL] [Abstract][Full Text] [Related]
18. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. Sousa MR; Jones JP; Frind EO; Rudolph DL J Contam Hydrol; 2013 Jan; 144(1):138-51. PubMed ID: 23274409 [TBL] [Abstract][Full Text] [Related]
19. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China. Yi S; Ma H; Zheng C; Zhu X; Wang H; Li X; Hu X; Qin J Sci Total Environ; 2012 Jan; 414():624-31. PubMed ID: 22119030 [TBL] [Abstract][Full Text] [Related]
20. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential. Yu S; Yun ST; Hwang SI; Chae G Environ Sci Pollut Res Int; 2019 Jul; 26(21):21216-21238. PubMed ID: 31115822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]