BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23353808)

  • 21. Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin.
    Rao S; Tan A; Boyd BJ; Prestidge CA
    Nanomedicine (Lond); 2014 Dec; 9(18):2745-59. PubMed ID: 24938439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-sensitive nanoparticles of curcumin-celecoxib combination: evaluating drug synergy in ulcerative colitis model.
    Gugulothu D; Kulkarni A; Patravale V; Dandekar P
    J Pharm Sci; 2014 Feb; 103(2):687-96. PubMed ID: 24375287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo characteristics of celecoxib in situ formed suspensions for intra-articular administration.
    Larsen SW; Frost AB; Ostergaard J; Thomsen MH; Jacobsen S; Skonberg C; Hansen SH; Jensen HE; Larsen C
    J Pharm Sci; 2011 Oct; 100(10):4330-7. PubMed ID: 21598256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid nanomaterials that mimic the food effect: controlling enzymatic digestion for enhanced oral drug absorption.
    Tan A; Martin A; Nguyen TH; Boyd BJ; Prestidge CA
    Angew Chem Int Ed Engl; 2012 May; 51(22):5475-9. PubMed ID: 22505292
    [No Abstract]   [Full Text] [Related]  

  • 25. Nanocrystal-silica-lipid hybrid particles for the improved oral delivery of ziprasidone in vitro.
    Meola TR; Dening TJ; Prestidge CA
    Eur J Pharm Biopharm; 2018 Aug; 129():145-153. PubMed ID: 29857135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation.
    Song WH; Park JH; Yeom DW; Ahn BK; Lee KM; Lee SG; Woo HS; Choi YW
    Arch Pharm Res; 2013 Jan; 36(1):69-78. PubMed ID: 23325487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy.
    Zhao P; Jiang H; Jiang T; Zhi Z; Wu C; Sun C; Zhang J; Wang S
    Eur J Pharm Sci; 2012 Apr; 45(5):639-47. PubMed ID: 22251657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of polymers on the bioavailability of microencapsulated celecoxib.
    Homar M; Ubrich N; El Ghazouani F; Kristl J; Kerc J; Maincent P
    J Microencapsul; 2007 Nov; 24(7):621-33. PubMed ID: 17763056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of solidification on the performance of lipid-based colloidal carriers: oil-based versus self-emulsifying systems.
    Alinaghi A; Tan A; Rao S; Prestidge CA
    Curr Drug Deliv; 2015; 12(1):16-25. PubMed ID: 25030115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tulsi oil as a potential penetration enhancer for celecoxib transdermal gel formulations.
    Shamsher AA; Charoo NA; Rahman Z; Pillai KK; Kohli K
    Pharm Dev Technol; 2014 Feb; 19(1):21-30. PubMed ID: 23281713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel three-dimensional large-pore mesoporous carbon matrix as a potential nanovehicle for the fast release of the poorly water-soluble drug, celecoxib.
    Zhang Y; Wang H; Li C; Sun B; Wang Y; Wang S; Gao C
    Pharm Res; 2014 Apr; 31(4):1059-70. PubMed ID: 24287624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.
    Shi Y; Gao P; Gong Y; Ping H
    Mol Pharm; 2010 Oct; 7(5):1458-65. PubMed ID: 20704265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles.
    Simovic S; Hui H; Song Y; Davey AK; Rades T; Prestidge CA
    J Control Release; 2010 May; 143(3):367-73. PubMed ID: 20079390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of the impact of a range of Pluronic surfactants on the in-vitro solubilisation behaviour and oral bioavailability of lipidic formulations of atovaquone.
    Sek L; Boyd BJ; Charman WN; Porter CJ
    J Pharm Pharmacol; 2006 Jun; 58(6):809-20. PubMed ID: 16734982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facilitating gastrointestinal solubilisation and enhanced oral absorption of SN38 using a molecularly complexed silica-lipid hybrid delivery system.
    Bala V; Rao S; Prestidge CA
    Eur J Pharm Biopharm; 2016 Aug; 105():32-9. PubMed ID: 27245285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats.
    Boyd BJ; Khoo SM; Whittaker DV; Davey G; Porter CJ
    Int J Pharm; 2007 Aug; 340(1-2):52-60. PubMed ID: 17467935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colon-specific delivery of celecoxib is a potential strategy to improve toxicological and pharmacological properties of the selective Cox-2 inhibitor: implication in treatment of familiar adenomatous polyposis.
    Lee Y; Kim H; Kim W; Yoon JH; Jeong SH; Jung Y
    J Drug Target; 2012 Jul; 20(6):524-34. PubMed ID: 22632102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topical delivery of celecoxib using microemulsion.
    Subramanian N; Ghosal SK; Moulik SP
    Acta Pol Pharm; 2004; 61(5):335-41. PubMed ID: 15747689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of corneal and retinal pharmacokinetics after periocular drug administration.
    Amrite AC; Edelhauser HF; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):320-32. PubMed ID: 18172109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbeads: a novel multiparticulate drug delivery technology for increasing the solubility and dissolution of celecoxib.
    McDonald BF; Coulter IS; Marison IW
    Pharm Dev Technol; 2015 Mar; 20(2):211-8. PubMed ID: 24283499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.