These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23354287)

  • 1. A new structural paradigm in copper resistance in Streptococcus pneumoniae.
    Fu Y; Tsui HC; Bruce KE; Sham LT; Higgins KA; Lisher JP; Kazmierczak KM; Maroney MJ; Dann CE; Winkler ME; Giedroc DP
    Nat Chem Biol; 2013 Mar; 9(3):177-83. PubMed ID: 23354287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The S2 Cu(i) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance.
    Fu Y; Bruce KE; Wu H; Giedroc DP
    Metallomics; 2016 Jan; 8(1):61-70. PubMed ID: 26346139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal
    Neubert MJ; Dahlmann EA; Ambrose A; Johnson MDL
    mSphere; 2017; 2(5):. PubMed ID: 29062896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae.
    Shafeeq S; Yesilkaya H; Kloosterman TG; Narayanan G; Wandel M; Andrew PW; Kuipers OP; Morrissey JA
    Mol Microbiol; 2011 Sep; 81(5):1255-70. PubMed ID: 21736642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA.
    Agarwal S; Hong D; Desai NK; Sazinsky MH; Argüello JM; Rosenzweig AC
    Proteins; 2010 Aug; 78(11):2450-8. PubMed ID: 20602459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance.
    Johnson MD; Kehl-Fie TE; Klein R; Kelly J; Burnham C; Mann B; Rosch JW
    Infect Immun; 2015 Apr; 83(4):1684-94. PubMed ID: 25667262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
    González-Guerrero M; Hong D; Argüello JM
    J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper Intoxication in Group B Streptococcus Triggers Transcriptional Activation of the
    Sullivan MJ; Goh KGK; Gosling D; Katupitiya L; Ulett GC
    J Bacteriol; 2021 Sep; 203(19):e0031521. PubMed ID: 34251869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA.
    Singleton C; Banci L; Ciofi-Baffoni S; Tenori L; Kihlken MA; Boetzel R; Le Brun NE
    Biochem J; 2008 May; 411(3):571-9. PubMed ID: 18215122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA.
    Zhou L; Singleton C; Hecht O; Moore GR; Le Brun NE
    FEBS J; 2012 Jan; 279(2):285-98. PubMed ID: 22077885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
    Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase.
    Rensing C; Fan B; Sharma R; Mitra B; Rosen BP
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):652-6. PubMed ID: 10639134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a copper-transporting PIB-type ATPase.
    Gourdon P; Liu XY; Skjørringe T; Morth JP; Møller LB; Pedersen BP; Nissen P
    Nature; 2011 Jun; 475(7354):59-64. PubMed ID: 21716286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
    Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS
    FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unprecedented binding cooperativity between Cu(I) and Cu(II) in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography.
    Chong LX; Ash MR; Maher MJ; Hinds MG; Xiao Z; Wedd AG
    J Am Chem Soc; 2009 Mar; 131(10):3549-64. PubMed ID: 19236095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.