BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23354324)

  • 1. Stereoselective syntheses of racemic quercitols and bromoquercitols starting from cyclohexa-1,4-diene: gala-, epi-, muco-, and neo-quercitol.
    Aydın G; Savran T; Aktaş F; Baran A; Balci M
    Org Biomol Chem; 2013 Mar; 11(9):1511-24. PubMed ID: 23354324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective synthesis of bishomo-inositols as glycosidase inhibitors.
    Baran A; Balci M
    J Org Chem; 2009 Jan; 74(1):88-95. PubMed ID: 19113902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective synthesis of new rac-quercitols containing hydroxymethyl groups as glucosidase inhibitors.
    Aydin G; Savran T; Baran Ş; Baran A
    Bioorg Med Chem Lett; 2018 Aug; 28(14):2555-2560. PubMed ID: 29866516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical synthesis of all inositol stereoisomers from myo-inositol.
    Chung SK; Kwon YU
    Bioorg Med Chem Lett; 1999 Aug; 9(15):2135-40. PubMed ID: 10465532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel and short synthesis of (1,4/2)-cyclohex-5-ene-triol and its conversion to (+/-)-proto-quercitol.
    Gültekin MS; Salamci E; Balci M
    Carbohydr Res; 2003 Jul; 338(16):1615-9. PubMed ID: 12873418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of quercitols into 4-methylenecyclohex-5-ene-1,2,3-triol derivatives, precursors for the chemical chaperones N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV).
    Kuno S; Takahashi A; Ogawa S
    Bioorg Med Chem Lett; 2011 Dec; 21(23):7189-92. PubMed ID: 22001090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis of epothilones using functionalised allylstannanes for remote stereocontrol.
    Martin N; Thomas EJ
    Org Biomol Chem; 2012 Oct; 10(39):7952-64. PubMed ID: 22940725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trisequential photooxygenation reaction: application to the synthesis of carbasugars.
    Baran A; Aydin G; Savran T; Sahin E; Balci M
    Org Lett; 2013 Sep; 15(17):4350-3. PubMed ID: 23962300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of bromo-conduritol-B and bromo-conduritol-C as glycosidase inhibitors.
    Cantekin S; Baran A; Calişkan R; Balci M
    Carbohydr Res; 2009 Mar; 344(4):426-31. PubMed ID: 19121824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Concise and Convenient Synthesis of DL-proto-Quercitol and DL-gala-Quercitol via Ene Reaction of Singlet Oxygen Combined with [2 + 4] Cycloaddition to Cyclohexadiene.
    Salamci E; Seçen H; Sütbeyaz Y; Balci M
    J Org Chem; 1997 Apr; 62(8):2453-2457. PubMed ID: 11671581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regio- and stereoselective synthesis of aminoinositols and 1,2-diaminoinositols from conduritol B epoxide.
    Serrano P; Llebaria A; Delgado A
    J Org Chem; 2005 Sep; 70(20):7829-40. PubMed ID: 16277302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis and production of quercitols and their application in the production of pharmaceuticals: current status and prospects.
    Itoh N
    Appl Microbiol Biotechnol; 2018 Jun; 102(11):4641-4651. PubMed ID: 29663050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively blocked derivatives of muco-inositol and their conversion into derivatives of epi- and cis-inositol.
    Espelie KE; Anderson L
    Carbohydr Res; 1976 Jan; 46(1):53-66. PubMed ID: 1248014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regio- and stereospecific synthesis of rac-carbasugar-based cyclohexane pentols; Investigations of their α- and β-glucosidase inhibitions.
    Karakılıç E; Durmuş S; Sevmezler S; Şahin O; Baran A
    Bioorg Med Chem; 2018 Aug; 26(14):4276-4287. PubMed ID: 30031655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of bishomoinositols and an entry for construction of a substituted 3-oxabicyclo[3.3.1]nonane skeleton.
    Baran A; Bekarlar M; Aydin G; Nebioglu M; Şahin E; Balci M
    J Org Chem; 2012 Feb; 77(3):1244-50. PubMed ID: 22229812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convenient synthesis of 3- and 6-deoxy-D-myo-inositol phosphate analogues from (+)-epi- and (-)-vibo-quercitols.
    Ogawa S; Tezuka Y
    Bioorg Med Chem Lett; 2006 Oct; 16(19):5238-43. PubMed ID: 16904317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric tandem Michael addition-ylide olefination reaction for the synthesis of optically active cyclohexa-1,3-diene derivatives.
    Ye LW; Wang SB; Wang QG; Sun XL; Tang Y; Zhou YG
    Chem Commun (Camb); 2009 Jun; (21):3092-4. PubMed ID: 19462097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concise syntheses of potent chaperone drug candidates, N-octyl-4-epi-β-valinenamine (NOEV) and its 6-deoxy derivative, from (+)-proto-quercitol.
    Kuno S; Takahashi A; Ogawa S
    Carbohydr Res; 2013 Mar; 368():8-15. PubMed ID: 23314299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common-intermediate strategy for synthesis of conduritols and inositols via beta-hydroxy cyclohexenylsilanes.
    Heo JN; Holson EB; Roush WR
    Org Lett; 2003 May; 5(10):1697-700. PubMed ID: 12735755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and biological activities of some branched carbasugars: construction of a substituted 6-oxabicyclo[3.2.1]nonane skeleton.
    Baran A; Çambul S; Nebioglu M; Balci M
    J Org Chem; 2012 Jun; 77(11):5086-97. PubMed ID: 22607049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.