These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23354425)
1. Utilization of nitrate abolishes the "Custers effect" in Dekkera bruxellensis and determines a different pattern of fermentation products. Galafassi S; Capusoni C; Moktaduzzaman M; Compagno C J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):297-303. PubMed ID: 23354425 [TBL] [Abstract][Full Text] [Related]
2. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. de Barros Pita W; Leite FC; de Souza Liberal AT; Simões DA; de Morais MA Antonie Van Leeuwenhoek; 2011 Jun; 100(1):99-107. PubMed ID: 21350883 [TBL] [Abstract][Full Text] [Related]
3. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis. Peña-Moreno IC; Castro Parente D; da Silva JM; Andrade Mendonça A; Rojas LAV; de Morais Junior MA; de Barros Pita W J Ind Microbiol Biotechnol; 2019 Feb; 46(2):209-220. PubMed ID: 30539327 [TBL] [Abstract][Full Text] [Related]
4. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. Neto AG; Pestana-Calsa MC; de Morais MA; Calsa T J Proteomics; 2014 Jun; 104():104-11. PubMed ID: 24667144 [TBL] [Abstract][Full Text] [Related]
5. The influence of nitrate on the physiology of the yeast Dekkera bruxellensis grown under oxygen limitation. de Barros Pita W; Tiukova I; Leite FC; Passoth V; Simões DA; de Morais MA Yeast; 2013 Mar; 30(3):111-7. PubMed ID: 23440690 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic analyses reveal the metabolic aspects and biotechnological potential of nitrate assimilation in the yeast Dekkera bruxellensis. Peña-Moreno IC; Parente DC; da Silva KM; Pena EPN; Silva FAC; Calsa Junior T; de Barros Pita W; de Morais MA Appl Microbiol Biotechnol; 2021 Feb; 105(4):1585-1600. PubMed ID: 33538877 [TBL] [Abstract][Full Text] [Related]
8. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026 [TBL] [Abstract][Full Text] [Related]
9. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Pereira LF; Bassi AP; Avansini SH; Neto AG; Brasileiro BT; Ceccato-Antonini SR; de Morais MA Antonie Van Leeuwenhoek; 2012 Mar; 101(3):529-39. PubMed ID: 22041979 [TBL] [Abstract][Full Text] [Related]
10. Potassium metabisulphite as a potential biocide against Dekkera bruxellensis in fuel ethanol fermentations. Bassi AP; Paraluppi AL; Reis VR; Ceccato-Antonini SR Lett Appl Microbiol; 2015 Mar; 60(3):248-58. PubMed ID: 25421952 [TBL] [Abstract][Full Text] [Related]
11. Metabolic and biotechnological insights on the analysis of the Pdh bypass and acetate production in the yeast Dekkera bruxellensis. Teles GH; da Silva JM; Xavier MR; de Souza RB; de Barros Pita W; de Morais Junior MA J Biotechnol; 2022 Aug; 355():42-52. PubMed ID: 35760147 [TBL] [Abstract][Full Text] [Related]
12. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: a few keys for improving ethanol fermentation. Teles GH; da Silva JM; Mendonça AA; de Morais Junior MA; de Barros Pita W Yeast; 2018 Oct; 35(10):577-584. PubMed ID: 30006941 [TBL] [Abstract][Full Text] [Related]
13. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124 [TBL] [Abstract][Full Text] [Related]
15. Distribution of Dekkera bruxellensis in a sugarcane-based fuel ethanol fermentation plant. da Silva TC; Leite FC; De Morais MA Lett Appl Microbiol; 2016 Apr; 62(4):354-8. PubMed ID: 26928357 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044 [TBL] [Abstract][Full Text] [Related]
17. Glutamine: a major player in nitrogen catabolite repression in the yeast Dekkera bruxellensis. Cajueiro DBB; Parente DC; Leite FCB; de Morais Junior MA; de Barros Pita W Antonie Van Leeuwenhoek; 2017 Sep; 110(9):1157-1168. PubMed ID: 28631172 [TBL] [Abstract][Full Text] [Related]
18. Volatile phenols are produced by strains of Dekkera bruxellensis under Brazilian fuel ethanol industry-like conditions. Silva LFL; Réco AS; Peña R; Ganga MA; Ceccato-Antonini SR FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30239698 [TBL] [Abstract][Full Text] [Related]
19. Physiology and gene expression profiles of Dekkera bruxellensis in response to carbon and nitrogen availability. de Barros Pita W; Silva DC; Simões DA; Passoth V; de Morais MA Antonie Van Leeuwenhoek; 2013 Nov; 104(5):855-68. PubMed ID: 23959165 [TBL] [Abstract][Full Text] [Related]
20. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae. Bassi AP; da Silva JC; Reis VR; Ceccato-Antonini SR World J Microbiol Biotechnol; 2013 Sep; 29(9):1661-76. PubMed ID: 23536198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]