These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23354439)

  • 1. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis.
    Twigg SR; Vorgia E; McGowan SJ; Peraki I; Fenwick AL; Sharma VP; Allegra M; Zaragkoulias A; Sadighi Akha E; Knight SJ; Lord H; Lester T; Izatt L; Lampe AK; Mohammed SN; Stewart FJ; Verloes A; Wilson LC; Healy C; Sharpe PT; Hammond P; Hughes J; Taylor S; Johnson D; Wall SA; Mavrothalassitis G; Wilkie AO
    Nat Genet; 2013 Mar; 45(3):308-13. PubMed ID: 23354439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterozygous mutations in ERF cause syndromic craniosynostosis with multiple suture involvement.
    Chaudhry A; Sabatini P; Han L; Ray PN; Forrest C; Bowdin S
    Am J Med Genet A; 2015 Nov; 167A(11):2544-7. PubMed ID: 26097063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Erf-Mediated Craniosynostosis and Pharmacological Amelioration.
    Vogiatzi A; Keklikoglou K; Makris K; Argyrou DS; Zacharopoulos A; Sotiropoulou V; Parthenios N; Gkikas A; Kokkori M; Richardson MSW; Fenwick AL; Archontidi S; Arvanitidis C; Robertson J; Parthenios J; Zacharakis G; Twigg SRF; Wilkie AOM; Mavrothalassitis G
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erf Affects Commitment and Differentiation of Osteoprogenitor Cells in Cranial Sutures via the Retinoic Acid Pathway.
    Vogiatzi A; Baltsavia I; Dialynas E; Theodorou V; Zhou Y; Deligianni E; Iliopoulos I; Wilkie AOM; Twigg SRF; Mavrothalassitis G
    Mol Cell Biol; 2021 Jul; 41(8):e0014921. PubMed ID: 33972395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis.
    Goos JAC; Vogel WK; Mlcochova H; Millard CJ; Esfandiari E; Selman WH; Calpena E; Koelling N; Carpenter EL; Swagemakers SMA; van der Spek PJ; Filtz TM; Schwabe JWR; Iwaniec UT; Mathijssen IMJ; Leid M; Twigg SRF
    Hum Mol Genet; 2019 Aug; 28(15):2501-2513. PubMed ID: 31067316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [An infant with premature closure of cranial sutures due to variant of ERF gene and a literature review].
    Wang J; Wang D; Zeng L; Wang S
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2023 Aug; 40(8):1009-1014. PubMed ID: 37532503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary Delayed Onset Craniosynostosis in a Child With ERF-Related Craniosynostosis Syndrome and Familial Cerebral Cavernous Malformation Syndrome.
    Radu S; Jedrzejewski B; Urbinelli L
    Cleft Palate Craniofac J; 2023 Oct; 60(10):1321-1325. PubMed ID: 35313736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome.
    Glass GE; O'Hara J; Canham N; Cilliers D; Dunaway D; Fenwick AL; Jeelani NO; Johnson D; Lester T; Lord H; Morton JEV; Nishikawa H; Noons P; Schwiebert K; Shipster C; Taylor-Beadling A; Twigg SRF; Vasudevan P; Wall SA; Wilkie AOM; Wilson LC
    Am J Med Genet A; 2019 Apr; 179(4):615-627. PubMed ID: 30758909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation.
    Sgouras DN; Athanasiou MA; Beal GJ; Fisher RJ; Blair DG; Mavrothalassitis GJ
    EMBO J; 1995 Oct; 14(19):4781-93. PubMed ID: 7588608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.
    Song D; Zhang F; Reid RR; Ye J; Wei Q; Liao J; Zou Y; Fan J; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Wang J; Lee MJ; Wolf JM; Huang D; He TC
    J Cell Mol Med; 2017 Nov; 21(11):2782-2795. PubMed ID: 28470873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis.
    Timberlake AT; Furey CG; Choi J; Nelson-Williams C; ; Loring E; Galm A; Kahle KT; Steinbacher DM; Larysz D; Persing JA; Lifton RP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7341-E7347. PubMed ID: 28808027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo - in vitro approach.
    Coussens AK; Hughes IP; Wilkinson CR; Morris CP; Anderson PJ; Powell BC; van Daal A
    Differentiation; 2008 May; 76(5):531-45. PubMed ID: 18093228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERF-related craniosynostosis and surgical management in the paediatric cohort.
    Afshari FT; Gallo P; Shafi A; Grant J; Drew A; Noons P; Jagadeesan J; Evans M; Brittain H; Rodrigues D
    Childs Nerv Syst; 2023 Apr; 39(4):983-988. PubMed ID: 36209295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis.
    Behr B; Longaker MT; Quarto N
    Dev Biol; 2010 Aug; 344(2):922-40. PubMed ID: 20547147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification.
    He F; Soriano P
    Development; 2017 Nov; 144(21):4026-4036. PubMed ID: 28947535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development.
    Pfaff MJ; Xue K; Li L; Horowitz MC; Steinbacher DM; Eswarakumar JVP
    Dev Biol; 2016 Jul; 415(2):242-250. PubMed ID: 27034231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial regulation of gene expression in nonsyndromic sagittal craniosynostosis.
    Cyprus GN; Overlin JW; Vega RA; Ritter AM; Olivares-Navarrete R
    J Neurosurg Pediatr; 2018 Dec; 22(6):620-626. PubMed ID: 30215585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.
    Ting MC; Wu NL; Roybal PG; Sun J; Liu L; Yen Y; Maxson RE
    Development; 2009 Mar; 136(5):855-64. PubMed ID: 19201948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
    Holmes G; Basilico C
    Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche.
    Barba M; Di Pietro L; Massimi L; Geloso MC; Frassanito P; Caldarelli M; Michetti F; Della Longa S; Romitti PA; Di Rocco C; Arcovito A; Parolini O; Tamburrini G; Bernardini C; Boyadjiev SA; Lattanzi W
    Bone; 2018 Jul; 112():58-70. PubMed ID: 29674126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.