BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23354475)

  • 1. Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide.
    Beheshtian J; Peyghan AA; Bagheri Z
    J Mol Model; 2013 Jun; 19(6):2197-203. PubMed ID: 23354475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study.
    Beheshtian J; Baei MT; Peyghan AA; Bagheri Z
    J Mol Model; 2012 Oct; 18(10):4745-50. PubMed ID: 22678082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.
    Baei MT; Peyghan AA; Tavakoli K; Babaheydari AK; Moghimi M
    J Mol Model; 2012 Sep; 18(9):4427-36. PubMed ID: 22588584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Carbon Monoxide and Carbon Dioxide Adsorption on (5,5) Aluminum Nitride Nanotubes for Enhanced Sensor Applications: A DFT Study.
    Suleiman N; Apalangya VA; Mensah B; Kan-Dapaah K; Yaya A
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The H2 dissociation on the BN, AlN, BP and AlP nanotubes: a comparative study.
    Beheshtian J; Soleymanabadi H; Kamfiroozi M; Ahmadi A
    J Mol Model; 2012 Jun; 18(6):2343-8. PubMed ID: 21979405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.
    Li Y; Zhou Z; Shen P; Zhang SB; Chen Z
    Nanotechnology; 2009 May; 20(21):215701. PubMed ID: 19423940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of CO molecule on AlN nanotubes by parallel electric field.
    Peyghan AA; Baei MT; Hashemian S; Torabi P
    J Mol Model; 2013 Feb; 19(2):859-70. PubMed ID: 23073700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of structural engineering on the monitoring of acrolein by aluminum nitride nano tube.
    Al-Bayati ADJ; Hasoon A; Alanssari AI; Al-Thamir M; Ismael NS; Hussein MJ; Alawadi AHR
    J Mol Model; 2024 Jan; 30(2):31. PubMed ID: 38196011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear optical properties of aluminum nitride nanotubes doped by excess electron: a first principle study.
    Yuan TM; Liu SL; Liu ZB; Wang X; Li WZ; Cheng JB; Li QZ
    J Mol Model; 2018 Jul; 24(8):205. PubMed ID: 30008049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of acetylsalicylic acid on the aluminum nitride nanotube in both gas and solvent medium: a DFT study.
    Xiao M; Liu P
    J Mol Model; 2020 Sep; 26(10):271. PubMed ID: 32935167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring adsorption mechanism of hydrogen cyanide and cyanogen chloride molecules on arsenene nanoribbon from first-principles.
    Bhuvaneswari R; Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2019 Jun; 89():13-21. PubMed ID: 30844605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube.
    Baei MT; Peyghan AA; Moghimi M
    J Mol Model; 2012 Sep; 18(9):4477-89. PubMed ID: 22643968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and Stone-Wales defected single-walled carbon nanotubes.
    Tabtimsai C; Keawwangchai S; Nunthaboot N; Ruangpornvisuti V; Wanno B
    J Mol Model; 2012 Aug; 18(8):3941-9. PubMed ID: 22431225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.
    Zhang YQ; Liu YJ; Liu YL; Zhao JX
    J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.
    Hamid AM; El-Shall MS; Hilal R; Elroby S; Aziz SG
    J Chem Phys; 2014 Aug; 141(5):054305. PubMed ID: 25106585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory evaluation of pristine and BN-doped biphenylene nanosheets to detect HCN.
    Esfandiarpour R; Hosseini MR; Hadipour NL; Bahrami A
    J Mol Model; 2019 May; 25(6):163. PubMed ID: 31098854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Aug; 24(9):242. PubMed ID: 30121785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations.
    Shokuhi Rad A; Zardoost MR; Abedini E
    J Mol Model; 2015 Oct; 21(10):273. PubMed ID: 26419973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.