These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23354619)

  • 41. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Sci Total Environ; 2016 Oct; 566-567():76-85. PubMed ID: 27213673
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano-TiO
    Ayanda OS; Nelana SM; Petrik LF; Naidoo EB
    J Water Health; 2017 Oct; 15(6):1015-1027. PubMed ID: 29215363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Treatment of wastewater containing Cu(II)-EDTA using immobilized TiO2/solar light.
    Cho IH; Lee NH; Yang JK; Lee SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):165-70. PubMed ID: 17182387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil.
    Liphadzi S; Kirkham MB
    Water Sci Technol; 2006; 54(5):147-53. PubMed ID: 17087380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nano-TiO
    Fan W; Liu T; Li X; Peng R; Zhang Y
    Environ Pollut; 2016 Nov; 218():77-85. PubMed ID: 27552040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.
    Shipley HJ; Engates KE; Grover VA
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1727-36. PubMed ID: 22645012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater.
    Asadi F; Shariatmadari H; Mirghaffari N
    J Hazard Mater; 2008 Jun; 154(1-3):451-8. PubMed ID: 18054431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Particle concentration effect in adsorption/desorption of Zn(II) on anatase type nano TiO2.
    Yang YH; Chen H; Pan G
    J Environ Sci (China); 2007; 19(12):1442-5. PubMed ID: 18277647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Treatment of hazardous sorbents generated from the adsorption of heavy metals during incineration.
    Wey MY; Yan MH; Chen JC
    J Hazard Mater; 2000 Mar; 73(1):19-37. PubMed ID: 10686376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.
    Sounthararajah DP; Loganathan P; Kandasamy J; Vigneswaran S
    J Hazard Mater; 2015 Apr; 287():306-16. PubMed ID: 25668299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater.
    Ajmal M; Rao RA; Ahmad R; Ahmad J
    J Hazard Mater; 2000 Dec; 79(1-2):117-31. PubMed ID: 11040390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II).
    White BR; Stackhouse BT; Holcombe JA
    J Hazard Mater; 2009 Jan; 161(2-3):848-53. PubMed ID: 18571848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine.
    Maketon W; Zenner CZ; Ogden KL
    Environ Sci Technol; 2008 Mar; 42(6):2124-9. PubMed ID: 18409647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.
    Marzougui Z; Chaabouni A; Elleuch B; Elaissari A
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15807-19. PubMed ID: 26396007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of heavy metals in medical waste incineration fly ash by Na
    Li YM; Wang CF; Wang LJ; Huang TY; Zhou GZ
    J Air Waste Manag Assoc; 2020 Sep; 70(9):904-914. PubMed ID: 32412866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of ferric chloride addition on the removal of Cu and Zn complexes with EDTA during municipal wastewater treatment.
    Christianne Ridge A; Sedlak DL
    Water Res; 2004 Feb; 38(4):921-32. PubMed ID: 14769412
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Washing of metal contaminated soil with EDTA and process water recycling.
    Pociecha M; Lestan D
    J Hazard Mater; 2012 Oct; 235-236():384-7. PubMed ID: 22921125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II).
    Sun P; Zhang W; Zou B; Zhou L; Ye Z; Zhao Q
    Int J Biol Macromol; 2021 Jul; 182():1138-1149. PubMed ID: 33895175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.