These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23354693)

  • 1. The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability.
    Reich S; Rosenbaum R
    J Comput Neurosci; 2013 Aug; 35(1):39-53. PubMed ID: 23354693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations.
    Rosenbaum R; Rubin JE; Doiron B
    J Neurophysiol; 2013 Jan; 109(2):475-84. PubMed ID: 23114215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.
    Rosenbaum R; Rubin J; Doiron B
    PLoS Comput Biol; 2012; 8(6):e1002557. PubMed ID: 22737062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Short-Term Dynamics of
    Ghanbari A; Ren N; Keine C; Stoelzel C; Englitz B; Swadlow HA; Stevenson IH
    J Neurosci; 2020 May; 40(21):4185-4202. PubMed ID: 32303648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of temporally correlated spike trains through synapses with short-term depression.
    Bird AD; Richardson MJE
    PLoS Comput Biol; 2018 Jun; 14(6):e1006232. PubMed ID: 29933363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating short-term synaptic plasticity from pre- and postsynaptic spiking.
    Ghanbari A; Malyshev A; Volgushev M; Stevenson IH
    PLoS Comput Biol; 2017 Sep; 13(9):e1005738. PubMed ID: 28873406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent calcium dependence of vesicle recruitment.
    Ritzau-Jost A; Jablonski L; Viotti J; Lipstein N; Eilers J; Hallermann S
    J Physiol; 2018 Oct; 596(19):4693-4707. PubMed ID: 29928766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
    Jacob V; Brasier DJ; Erchova I; Feldman D; Shulz DE
    J Neurosci; 2007 Feb; 27(6):1271-84. PubMed ID: 17287502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity.
    Elliott T
    Neural Comput; 2010 Jan; 22(1):244-72. PubMed ID: 19764870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study.
    Matveev V; Wang XJ
    J Neurosci; 2000 Feb; 20(4):1575-88. PubMed ID: 10662847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-Timing-dependent plasticity and short-term plasticity jointly control the excitation of Hebbian plasticity without weight constraints in neural networks.
    Fernando S; Yamada K
    Comput Intell Neurosci; 2012; 2012():968272. PubMed ID: 23365563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Multivesicular Release on the Transmission of Sensory Information by Ribbon Synapses.
    James B; Piekarz P; Moya-Díaz J; Lagnado L
    J Neurosci; 2022 Dec; 42(50):9401-9414. PubMed ID: 36344266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double inverse stochastic resonance with dynamic synapses.
    Uzuntarla M; Torres JJ; So P; Ozer M; Barreto E
    Phys Rev E; 2017 Jan; 95(1-1):012404. PubMed ID: 28208458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales.
    Mondal Y; Pena RFO; Rotstein HG
    J Comput Neurosci; 2022 Nov; 50(4):395-429. PubMed ID: 35869381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate?
    Matveev V; Wang XJ
    Cereb Cortex; 2000 Nov; 10(11):1143-53. PubMed ID: 11053234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic stochastic synapses as computational units.
    Maass W; Zador AM
    Neural Comput; 1999 May; 11(4):903-17. PubMed ID: 10226188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling synaptic plasticity in conjuction with the timing of pre- and postsynaptic action potentials.
    Kistler WM; van Hemmen JL
    Neural Comput; 2000 Feb; 12(2):385-405. PubMed ID: 10636948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.