BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23354775)

  • 1. Liver-specific p38α deficiency causes reduced cell growth and cytokinesis failure during chronic biliary cirrhosis in mice.
    Tormos AM; Arduini A; Talens-Visconti R; del Barco Barrantes I; Nebreda AR; Sastre J
    Hepatology; 2013 May; 57(5):1950-61. PubMed ID: 23354775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p38α deficiency restrains liver regeneration after partial hepatectomy triggering oxidative stress and liver injury.
    Rius-Pérez S; Tormos AM; Pérez S; Finamor I; Rada P; Valverde ÁM; Nebreda AR; Sastre J; Taléns-Visconti R
    Sci Rep; 2019 Mar; 9(1):3775. PubMed ID: 30846722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Met confers protection against chronic liver tissue damage and fibrosis progression after bile duct ligation in mice.
    Giebeler A; Boekschoten MV; Klein C; Borowiak M; Birchmeier C; Gassler N; Wasmuth HE; Müller M; Trautwein C; Streetz KL
    Gastroenterology; 2009 Jul; 137(1):297-308, 308.e1-4. PubMed ID: 19208365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging.
    Tormos AM; Rius-Pérez S; Jorques M; Rada P; Ramirez L; Valverde ÁM; Nebreda ÁR; Sastre J; Taléns-Visconti R
    PLoS One; 2017; 12(2):e0171738. PubMed ID: 28166285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHOP deficiency attenuates cholestasis-induced liver fibrosis by reduction of hepatocyte injury.
    Tamaki N; Hatano E; Taura K; Tada M; Kodama Y; Nitta T; Iwaisako K; Seo S; Nakajima A; Ikai I; Uemoto S
    Am J Physiol Gastrointest Liver Physiol; 2008 Feb; 294(2):G498-505. PubMed ID: 18174271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis.
    Lunz JG; Tsuji H; Nozaki I; Murase N; Demetris AJ
    Hepatology; 2005 Jun; 41(6):1262-71. PubMed ID: 15880761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p38α deficiency and oxidative stress cause cytokinesis failure in hepatocytes.
    Tormos Ana M; Taléns-Visconti R; Jorques M; Pérez-Garrido S; Bonora-Centelles A; Nebreda Ángel R; Sastre J
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S19. PubMed ID: 26461300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effect of resveratrol against oxidative stress in cholestasis.
    Ara C; Kirimlioglu H; Karabulut AB; Coban S; Ay S; Harputluoglu M; Kirimlioglu V; Yilmaz S
    J Surg Res; 2005 Aug; 127(2):112-7. PubMed ID: 16083749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic iron overload stimulates hepatocyte proliferation and cyclin D1 expression in rodent liver.
    Brown KE; Mathahs MM; Broadhurst KA; Weydert J
    Transl Res; 2006 Aug; 148(2):55-62. PubMed ID: 16890145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic p38α regulates gluconeogenesis by suppressing AMPK.
    Jing Y; Liu W; Cao H; Zhang D; Yao X; Zhang S; Xia H; Li D; Wang YC; Yan J; Hui L; Ying H
    J Hepatol; 2015 Jun; 62(6):1319-27. PubMed ID: 25595884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice.
    Isayama F; Hines IN; Kremer M; Milton RJ; Byrd CL; Perry AW; McKim SE; Parsons C; Rippe RA; Wheeler MD
    Am J Physiol Gastrointest Liver Physiol; 2006 Jun; 290(6):G1318-28. PubMed ID: 16439470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferative capability of hepatocytes and expression of G1-related cell cycle molecules in the development of liver cirrhosis in rats.
    Funakoshi F; Masaki T; Kita Y; Hitomi M; Kurokohchi K; Uchida N; Watanabe S; Yoshiji H; Kuriyama S
    Int J Mol Med; 2004 Jun; 13(6):779-87. PubMed ID: 15138612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A.
    Chen L; Zeng Y; Yang H; Lee TD; French SW; Corrales FJ; García-Trevijano ER; Avila MA; Mato JM; Lu SC
    FASEB J; 2004 May; 18(7):914-6. PubMed ID: 15033934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of acid sphingomyelinase of Kupffer cells in cholestatic liver injury in mice.
    Osawa Y; Seki E; Adachi M; Suetsugu A; Ito H; Moriwaki H; Seishima M; Nagaki M
    Hepatology; 2010 Jan; 51(1):237-45. PubMed ID: 19821528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biliary intervention aggravates cholestatic liver injury, and induces hepatic inflammation, proliferation and fibrogenesis in BDL mice.
    Wen YA; Liu D; Zhou QY; Huang SF; Luo P; Xiang Y; Sun S; Luo D; Dong YF; Zhang LP
    Exp Toxicol Pathol; 2011 Mar; 63(3):277-84. PubMed ID: 20149605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ).
    Bachstetter AD; Xing B; de Almeida L; Dimayuga ER; Watterson DM; Van Eldik LJ
    J Neuroinflammation; 2011 Jul; 8():79. PubMed ID: 21733175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of apoptosis signal-regulating kinase 1 prevents bile duct ligation-induced necroinflammation and subsequent peribiliary fibrosis.
    Noguchi H; Yamada S; Nabeshima A; Guo X; Tanimoto A; Wang KY; Kitada S; Tasaki T; Takama T; Shimajiri S; Horlad H; Komohara Y; Izumi H; Kohno K; Ichijo H; Sasaguri Y
    Am J Pathol; 2014 Mar; 184(3):644-61. PubMed ID: 24412091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction.
    Chen Y; Guldiken N; Spurny M; Mohammed HH; Haybaeck J; Pollheimer MJ; Fickert P; Gassler N; Jeon MK; Trautwein C; Strnad P
    J Pathol; 2015 Nov; 237(3):343-54. PubMed ID: 26108453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Gab1 adaptor protein in hepatocytes aggravates experimental liver fibrosis in mice.
    Kizu T; Yoshida Y; Furuta K; Ogura S; Egawa M; Chatani N; Hamano M; Takemura T; Ezaki H; Kamada Y; Nishida K; Nakaoka Y; Kiso S; Takehara T
    Am J Physiol Gastrointest Liver Physiol; 2015 Apr; 308(7):G613-24. PubMed ID: 25617348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of caspase 8 in liver parenchymal cells confers protection against murine obstructive cholestasis.
    Cubero FJ; Peng J; Liao L; Su H; Zhao G; Zoubek ME; Macías-Rodríguez R; Ruiz-Margain A; Reißing J; Zimmermann HW; Gassler N; Luedde T; Liedtke C; Hatting M; Trautwein C
    J Hepatol; 2018 Dec; 69(6):1326-1334. PubMed ID: 30144553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.