These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A microfluidic device for continuous, real time blood plasma separation. Yang S; Undar A; Zahn JD Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591 [TBL] [Abstract][Full Text] [Related]
3. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958 [TBL] [Abstract][Full Text] [Related]
5. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
6. Development of a microfluidic device for cell concentration and blood cell-plasma separation. Maria MS; Kumar BS; Chandra TS; Sen AK Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic device for continuous white blood cell separation and lysis from whole blood. Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042 [TBL] [Abstract][Full Text] [Related]
8. Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Zhang XB; Wu ZQ; Wang K; Zhu J; Xu JJ; Xia XH; Chen HY Anal Chem; 2012 Apr; 84(8):3780-6. PubMed ID: 22449121 [TBL] [Abstract][Full Text] [Related]
9. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Nam J; Lim H; Kim D; Shin S Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070 [TBL] [Abstract][Full Text] [Related]
10. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
11. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
12. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
13. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
15. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
16. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911 [TBL] [Abstract][Full Text] [Related]