These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2335531)

  • 1. Inhomogeneous deformation as a source of error in strain measurements derived from implanted markers in the canine left ventricle.
    Douglas AS; Hunter WC; Wiseman MD
    J Biomech; 1990; 23(4):331-41. PubMed ID: 2335531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains.
    Waldman LK; Fung YC; Covell JW
    Circ Res; 1985 Jul; 57(1):152-63. PubMed ID: 4006099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium.
    McCulloch AD; Omens JH
    J Biomech; 1991; 24(7):539-48. PubMed ID: 1880138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between transmural deformation and local myofiber direction in canine left ventricle.
    Waldman LK; Nosan D; Villarreal F; Covell JW
    Circ Res; 1988 Sep; 63(3):550-62. PubMed ID: 3409487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonhomogeneous ventricular wall strain: analysis of errors and accuracy.
    Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Nov; 115(4B):497-502. PubMed ID: 8302031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technique for measuring regional two-dimensional finite strains in canine left ventricle.
    Villarreal FJ; Waldman LK; Lew WY
    Circ Res; 1988 Apr; 62(4):711-21. PubMed ID: 3349574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening.
    LeGrice IJ; Takayama Y; Covell JW
    Circ Res; 1995 Jul; 77(1):182-93. PubMed ID: 7788876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique strain history during ejection in canine left ventricle.
    Douglas AS; Rodriguez EK; O'Dell W; Hunter WC
    Am J Physiol; 1991 May; 260(5 Pt 2):H1596-611. PubMed ID: 2035680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration.
    Veress AI; Gullberg GT; Weiss JA
    J Biomech Eng; 2005 Dec; 127(7):1195-207. PubMed ID: 16502662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the strain-line patterns in a human left ventricle: a simulation study.
    Gabriele S; Nardinocchi P; Varano V
    Comput Methods Biomech Biomed Engin; 2015; 18(7):790-8. PubMed ID: 24156641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ventricular pacing on finite deformation in canine left ventricles.
    Waldman LK; Covell JW
    Am J Physiol; 1987 May; 252(5 Pt 2):H1023-30. PubMed ID: 3578536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonhomogeneous strain from sparse marker arrays for analysis of transmural myocardial mechanics.
    Kindberg K; Karlsson M; Ingels NB; Criscione JC
    J Biomech Eng; 2007 Aug; 129(4):603-10. PubMed ID: 17655482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite strains in anterior and posterior wall of canine left ventricle.
    Villarreal FJ; Lew WY
    Am J Physiol; 1990 Nov; 259(5 Pt 2):H1409-18. PubMed ID: 2240241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle.
    Omens JH; May KD; McCulloch AD
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H918-28. PubMed ID: 1887936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence.
    Zervantonakis IK; Fung-Kee-Fung SD; Lee WN; Konofagou EE
    Phys Med Biol; 2007 Jul; 52(14):4063-80. PubMed ID: 17664595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.