These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23355366)
1. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. Su CH; Hsu CH; Ng LT Biofactors; 2013; 39(4):415-21. PubMed ID: 23355366 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase - enzymes related to hyperglycemia. Su CH; Lai MN; Ng LT Food Funct; 2013 Apr; 4(4):644-9. PubMed ID: 23396484 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory potential of Grifola frondosa bioactive fractions on α-amylase and α-glucosidase for management of hyperglycemia. Su CH; Lu TM; Lai MN; Ng LT Biotechnol Appl Biochem; 2013; 60(4):446-52. PubMed ID: 24033596 [TBL] [Abstract][Full Text] [Related]
4. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Lekshmi PC; Arimboor R; Indulekha PS; Menon AN Int J Food Sci Nutr; 2012 Nov; 63(7):832-4. PubMed ID: 22385048 [TBL] [Abstract][Full Text] [Related]
5. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. Oboh G; Agunloye OM; Adefegha SA; Akinyemi AJ; Ademiluyi AO J Basic Clin Physiol Pharmacol; 2015 Mar; 26(2):165-70. PubMed ID: 24825096 [TBL] [Abstract][Full Text] [Related]
6. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Subramanian R; Asmawi MZ; Sadikun A Acta Biochim Pol; 2008; 55(2):391-8. PubMed ID: 18511986 [TBL] [Abstract][Full Text] [Related]
7. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Jhong CH; Riyaphan J; Lin SH; Chia YC; Weng CF Biofactors; 2015; 41(4):242-51. PubMed ID: 26154585 [TBL] [Abstract][Full Text] [Related]
8. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Sim L; Jayakanthan K; Mohan S; Nasi R; Johnston BD; Pinto BM; Rose DR Biochemistry; 2010 Jan; 49(3):443-51. PubMed ID: 20039683 [TBL] [Abstract][Full Text] [Related]
9. alpha-Glucosidase and alpha-amylase inhibitory activities of saponins from traditional Chinese medicines in the treatment of diabetes mellitus. Dou F; Xi M; Wang J; Tian X; Hong L; Tang H; Wen A Pharmazie; 2013 Apr; 68(4):300-4. PubMed ID: 23700798 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Adefegha SA; Oboh G Pharm Biol; 2012 Jul; 50(7):857-65. PubMed ID: 22480175 [TBL] [Abstract][Full Text] [Related]
11. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
12. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Ademiluyi AO; Oboh G Exp Toxicol Pathol; 2013 Mar; 65(3):305-9. PubMed ID: 22005499 [TBL] [Abstract][Full Text] [Related]
13. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of α-glucosidase and α-amylase inhibition. Cardullo N; Muccilli V; Pulvirenti L; Cornu A; Pouységu L; Deffieux D; Quideau S; Tringali C Food Chem; 2020 May; 313():126099. PubMed ID: 31927321 [TBL] [Abstract][Full Text] [Related]
14. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
15. Potential of Sorbus berry extracts for management of type 2 diabetes: Metabolomics investigation of Broholm SL; Gramsbergen SM; Nyberg NT; Jäger AK; Staerk D J Ethnopharmacol; 2019 Oct; 242():112061. PubMed ID: 31283956 [TBL] [Abstract][Full Text] [Related]
17. alpha-Glucosidase inhibitory activities of 10-hydroxy-8(E)-octadecenoic acid: an intermediate of bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid. Paul S; Hou CT; Kang SC N Biotechnol; 2010 Sep; 27(4):419-23. PubMed ID: 20385262 [TBL] [Abstract][Full Text] [Related]
18. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Zhang BW; Xing Y; Wen C; Yu XX; Sun WL; Xiu ZL; Dong YS Bioorg Med Chem Lett; 2017 Nov; 27(22):5065-5070. PubMed ID: 28964635 [TBL] [Abstract][Full Text] [Related]
19. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. Podsędek A; Majewska I; Redzynia M; Sosnowska D; Koziołkiewicz M J Agric Food Chem; 2014 May; 62(20):4610-7. PubMed ID: 24785184 [TBL] [Abstract][Full Text] [Related]