These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23355542)
1. Evaluation of a liquid dispenser for assay development and enzymology in 1536-well format. Butendeich H; Pierret NM; Numao S J Lab Autom; 2013 Jun; 18(3):245-50. PubMed ID: 23355542 [TBL] [Abstract][Full Text] [Related]
2. An alternative direct compound dispensing method using the HP D300 digital dispenser. Jones RE; Zheng W; McKew JC; Chen CZ J Lab Autom; 2013 Oct; 18(5):367-74. PubMed ID: 23708834 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a digital dispenser for direct curve dilutions in a vaccine potency assay. Roselle C; Whitehouse D; Follmer T; Ansbro F; Bouaraphan S; Guan L; Wang SK; Shank-Retzlaff M; Verch T J Immunol Methods; 2017 Mar; 442():20-28. PubMed ID: 28034712 [TBL] [Abstract][Full Text] [Related]
4. Miniaturisation of a high throughput screening assay comparing air displacement and capillary-based nanolitre transfer technologies. Mageean CJ; Büttner FH Comb Chem High Throughput Screen; 2010 Mar; 13(3):229-41. PubMed ID: 20015018 [TBL] [Abstract][Full Text] [Related]
5. Piezo- and solenoid valve-based liquid dispensing for miniaturized assays. Niles WD; Coassin PJ Assay Drug Dev Technol; 2005 Apr; 3(2):189-202. PubMed ID: 15871693 [TBL] [Abstract][Full Text] [Related]
6. IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments. Shumate J; Baillargeon P; Spicer TP; Scampavia L SLAS Technol; 2018 Oct; 23(5):440-447. PubMed ID: 29649373 [TBL] [Abstract][Full Text] [Related]
7. A cost-effective solution to reduce dead volume of a standard dispenser system by a factor of 5. Bergsdorf C; Gewiese N; Stolz A; Mann R; Parczyk K; Bömer U J Biomol Screen; 2006 Jun; 11(4):407-12. PubMed ID: 16490776 [TBL] [Abstract][Full Text] [Related]
8. [Evaluation of pipetting systems. II. Precision and accuracy of precision dispensers]. Loría A; Salas R Rev Invest Clin; 1990; 42(2):157-60. PubMed ID: 2267451 [TBL] [Abstract][Full Text] [Related]
9. Robotic liquid handling and automation in epigenetics. Gaisford W J Lab Autom; 2012 Oct; 17(5):327-9. PubMed ID: 22933618 [TBL] [Abstract][Full Text] [Related]
10. Automated non-stepwise preparation of bioanalytical calibration standards and quality controls using an ultra-low volume digitizing liquid dispenser. Liao D; Chen S; Paton M; Qian MG Rapid Commun Mass Spectrom; 2014 Jun; 28(11):1215-20. PubMed ID: 24760562 [TBL] [Abstract][Full Text] [Related]
11. Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility. Choi IH; Kim H; Lee S; Baek S; Kim J Biomicrofluidics; 2015 Nov; 9(6):064102. PubMed ID: 26594263 [TBL] [Abstract][Full Text] [Related]
12. A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Trivedi V; Doshi A; Kurup GK; Ereifej E; Vandevord PJ; Basu AS Lab Chip; 2010 Sep; 10(18):2433-42. PubMed ID: 20717617 [TBL] [Abstract][Full Text] [Related]
13. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. Jeong MH; Kim I; Park K; Ku B; Lee DW; Park KR; Jeon SY; Kim JE Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674523 [TBL] [Abstract][Full Text] [Related]
14. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays. Wang Y; Wu Y; Chen Y; Zhang J; Chen X; Liu P Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424219 [TBL] [Abstract][Full Text] [Related]
15. Quality control procedures for dose-response curve generation using nanoliter dispense technologies. Quintero C; Rosenstein C; Hughes B; Middleton R; Kariv I J Biomol Screen; 2007 Sep; 12(6):891-9. PubMed ID: 17517899 [TBL] [Abstract][Full Text] [Related]
16. Detection system for reaction-rate analysis in a low-volume proteinase-inhibition assay. Ambrose WP; Semin DJ; Robbins DL; Van Orden A; Kashem MA; Hamilton SA; Nelson RM; Jett JH; Keller RA Anal Biochem; 1998 Oct; 263(2):150-7. PubMed ID: 9799526 [TBL] [Abstract][Full Text] [Related]
17. A simple and effective calibration method to determine the accuracy of liquid-handling nano-dispenser devices. Rodríguez-Puente S; Linacero-Blanco J; Guasch A Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Mar; 69(Pt 3):336-41. PubMed ID: 23519817 [TBL] [Abstract][Full Text] [Related]
18. A chip-to-chip nanoliter microfluidic dispenser. Wang J; Zhou Y; Qiu H; Huang H; Sun C; Xi J; Huang Y Lab Chip; 2009 Jul; 9(13):1831-5. PubMed ID: 19532955 [TBL] [Abstract][Full Text] [Related]
19. A Calibration-Free, Noncontact, Disposable Liquid Dispensing Cartridge Featuring an Online Process Control. Bammesberger SB; Malki I; Ernst A; Zengerle R; Koltay P J Lab Autom; 2014 Aug; 19(4):394-402. PubMed ID: 23981469 [TBL] [Abstract][Full Text] [Related]
20. High-throughput quality control of DMSO acoustic dispensing using photometric dye methods. Quintero C; Tran K; Szewczak AA J Lab Autom; 2013 Aug; 18(4):296-305. PubMed ID: 23629143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]