These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 233557)

  • 1. Evidence for a hippocampal-septal glutamatergic pathway in the rat.
    Zaczek R; Hedreen JC; Coyle JT
    Exp Neurol; 1979 Jul; 65(1):145-56. PubMed ID: 233557
    [No Abstract]   [Full Text] [Related]  

  • 2. The transsynaptic regulation of the septal-hippocampal cholinergic neurons.
    Costa E; Panula P; Thompson HK; Cheney DL
    Life Sci; 1983 Jan; 32(3):165-79. PubMed ID: 6185815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological evaluation of GABAergic and glutamatergic inputs to the nucleus basalis--cortical and the septal-hippocampal cholinergic projections.
    Wood PL
    Can J Physiol Pharmacol; 1986 Mar; 64(3):325-8. PubMed ID: 3708440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain.
    Walaas I; Fonnum F
    Neuroscience; 1980; 5(10):1691-8. PubMed ID: 6253848
    [No Abstract]   [Full Text] [Related]  

  • 5. Striatal and septal influence on hippocampal theta and spikes in the cat.
    Sabatino M; Ferraro G; Liberti G; Vella N; La Grutta V
    Neurosci Lett; 1985 Oct; 61(1-2):55-9. PubMed ID: 3001592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching from contextual to tone fear conditioning and vice versa: the key role of the glutamatergic hippocampal-lateral septal neurotransmission.
    Calandreau L; Desgranges B; Jaffard R; Desmedt A
    Learn Mem; 2010 Sep; 17(9):440-3. PubMed ID: 20798266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septohippocampal acetylcholine: involved in but not necessary for learning and memory?
    Parent MB; Baxter MG
    Learn Mem; 2004; 11(1):9-20. PubMed ID: 14747512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons.
    Nieoullon A; Scarfone E; Kerkerian L; Errami M; Dusticier N
    Neurosci Lett; 1985 Aug; 58(3):299-304. PubMed ID: 2864669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization.
    Allen CN; Crawford IL
    Brain Res; 1984 Nov; 322(2):261-7. PubMed ID: 6509317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kainic acid stimulation of the lateral septum elicits tachycardia.
    Deutch AY; Clark LS; Peacock LJ
    Brain Res Bull; 1984 Mar; 12(3):209-14. PubMed ID: 6144375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons.
    Widmer H; Ferrigan L; Davies CH; Cobb SR
    Hippocampus; 2006; 16(7):617-28. PubMed ID: 16770798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid neurotransmitters and their pathways in the mammalian central nervous system.
    Fagg GE; Foster AC
    Neuroscience; 1983 Aug; 9(4):701-19. PubMed ID: 6137788
    [No Abstract]   [Full Text] [Related]  

  • 13. The entorhino-septo-supramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm.
    Leranth C; Carpi D; Buzsaki G; Kiss J
    Neuroscience; 1999; 88(3):701-18. PubMed ID: 10363811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional aspects of serotonin transmission in the basal ganglia: a review and an in vivo approach using the push-pull cannula technique.
    SoubriƩ P; Reisine TD; Glowinski J
    Neuroscience; 1984 Nov; 13(3):605-25. PubMed ID: 6084828
    [No Abstract]   [Full Text] [Related]  

  • 15. Response pattern of cat hippocampal neurons to stimulation of the septal area during sleep and waking.
    Kanamori N; Satoh T
    Physiol Behav; 1979 Aug; 23(2):363-8. PubMed ID: 228329
    [No Abstract]   [Full Text] [Related]  

  • 16. Neuronal plasticity in the red nucleus and the ventrolateral thalamus of the adult cat: a biochemical approach.
    Nieoullon A
    Adv Neurol; 1984; 40():107-16. PubMed ID: 6141709
    [No Abstract]   [Full Text] [Related]  

  • 17. Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system.
    Yang CR; Mogenson GJ
    Brain Res; 1984 Dec; 324(1):69-84. PubMed ID: 6151418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An electrophysiological analysis of pathways from lateral septum to hippocampal CA1 area in rat].
    Xie XP; Wang FZ
    Sheng Li Xue Bao; 1991 Apr; 43(2):113-9. PubMed ID: 2068580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat.
    Lynch G; Stanfield B; Parks T; Cotman CW
    Brain Res; 1974 Mar; 69(1):1-11. PubMed ID: 4817913
    [No Abstract]   [Full Text] [Related]  

  • 20. A [14C]2-deoxyglucose analysis of the functional neural pathways of the limbic forebrain in the rat. III. The hippocampal formation.
    Watson RE; Edinger HM; Siegel A
    Brain Res; 1983 Mar; 286(2):133-76. PubMed ID: 6299478
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.