BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23355744)

  • 21. Identification of a liver-specific uridine phosphorylase that is regulated by multiple lipid-sensing nuclear receptors.
    Zhang Y; Repa JJ; Inoue Y; Hayhurst GP; Gonzalez FJ; Mangelsdorf DJ
    Mol Endocrinol; 2004 Apr; 18(4):851-62. PubMed ID: 14715930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymes of pyrimidine metabolism in Mycoplasma mycoides subsp. mycoides.
    Mitchell A; Finch LR
    J Bacteriol; 1979 Mar; 137(3):1073-80. PubMed ID: 220209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orotic acid-induced metabolic changes in the rat.
    Durschlag RP; Robinson JL
    J Nutr; 1980 Apr; 110(4):816-21. PubMed ID: 7365548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative studies on pyrimidine metabolism in excised cotyledons of Pinus radiata during shoot formation in vitro.
    Stasolla C; Loukanina N; Ashihara H; Yeung EC; Thorpe TA
    J Plant Physiol; 2007 Apr; 164(4):429-41. PubMed ID: 16600426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Barley sprout extracts reduce hepatic lipid accumulation in ethanol-fed mice by activating hepatic AMP-activated protein kinase.
    Kim YJ; Hwang SH; Jia Y; Seo WD; Lee SJ
    Food Res Int; 2017 Nov; 101():209-217. PubMed ID: 28941686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism.
    Xiao F; Deng J; Guo Y; Niu Y; Yuan F; Yu J; Chen S; Guo F
    Sci Signal; 2016 May; 9(428):ra50. PubMed ID: 27188441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathways of pyrimidine salvage in Pseudomonas and former Pseudomonas: detection of recycling enzymes using high-performance liquid chromatography.
    Beck DA; O'Donovan GA
    Curr Microbiol; 2008 Feb; 56(2):162-7. PubMed ID: 17962997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice.
    Fromenty B; Fisch C; Labbe G; Degott C; Deschamps D; Berson A; Letteron P; Pessayre D
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1371-6. PubMed ID: 2124623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria.
    Wheeler PR
    J Gen Microbiol; 1990 Jan; 136(1):189-201. PubMed ID: 2191077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bromide alleviates fatty acid-induced lipid accumulation in mouse primary hepatocytes through the activation of PPARα signals.
    Shi Y; Zhang W; Cheng Y; Liu C; Chen S
    J Cell Mol Med; 2019 Jun; 23(6):4464-4474. PubMed ID: 31033195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells.
    Pérignon JL; Bories DM; Houllier AM; Thuillier L; Cartier PH
    Biochim Biophys Acta; 1987 Apr; 928(2):130-6. PubMed ID: 3567226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic dissection of pyrimidine biosynthesis and salvage in Leishmania donovani.
    Wilson ZN; Gilroy CA; Boitz JM; Ullman B; Yates PA
    J Biol Chem; 2012 Apr; 287(16):12759-70. PubMed ID: 22367196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of the mitochondrial oxidation of fatty acids by tetracycline in mice and in man: possible role in microvesicular steatosis induced by this antibiotic.
    Fréneaux E; Labbe G; Letteron P; The Le Dinh ; Degott C; Genève J; Larrey D; Pessayre D
    Hepatology; 1988; 8(5):1056-62. PubMed ID: 3417225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The iscS gene deficiency affects the expression of pyrimidine metabolism genes.
    Mihara H; Hidese R; Yamane M; Kurihara T; Esaki N
    Biochem Biophys Res Commun; 2008 Aug; 372(3):407-11. PubMed ID: 18482579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
    Malloy VL; Perrone CE; Mattocks DA; Ables GP; Caliendo NS; Orentreich DS; Orentreich N
    Metabolism; 2013 Nov; 62(11):1651-61. PubMed ID: 23928105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of dihydropyrimidine dehydrogenase in the uridine nucleotide metabolism in the rat liver.
    Fujimoto S; Kikugawa M; Kaneko M; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1992 Feb; 38(1):39-48. PubMed ID: 1629785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.
    Akie TE; Liu L; Nam M; Lei S; Cooper MP
    PLoS One; 2015; 10(5):e0125617. PubMed ID: 25933096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Severe cytochrome c oxidase inhibition in vivo does not induce a pyrimidine deficiency; neuroprotective action of oral uridine prodrug PN401 requires supraphysiological levels of uridine.
    Garcia RA; Liu L; Hu Z; Gonzalez A; von Borstel RW; Saydoff JA
    Brain Res; 2005 Dec; 1066(1-2):164-71. PubMed ID: 16330000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uridine supplementation antagonizes zalcitabine-induced microvesicular steatohepatitis in mice.
    Lebrecht D; Vargas-Infante YA; Setzer B; Kirschner J; Walker UA
    Hepatology; 2007 Jan; 45(1):72-9. PubMed ID: 17187420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver.
    Begriche K; Massart J; Robin MA; Borgne-Sanchez A; Fromenty B
    J Hepatol; 2011 Apr; 54(4):773-94. PubMed ID: 21145849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.