These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23355907)

  • 1. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties.
    Toro N; Martínez-Abarca F
    PLoS One; 2013; 8(1):e55102. PubMed ID: 23355907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases.
    Simon DM; Kelchner SA; Zimmerly S
    Mol Biol Evol; 2009 Dec; 26(12):2795-808. PubMed ID: 19713327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic relationships among group II intron ORFs.
    Zimmerly S; Hausner G; Wu Xc
    Nucleic Acids Res; 2001 Mar; 29(5):1238-50. PubMed ID: 11222775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants.
    Mohr G; Lambowitz AM
    Nucleic Acids Res; 2003 Jan; 31(2):647-52. PubMed ID: 12527773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of bacterial class E group II introns.
    Toro N; Molina-Sánchez MD; Fernández-López M
    Gene; 2002 Oct; 299(1-2):245-50. PubMed ID: 12459272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural features in the C-terminal region of the Sinorhizobium meliloti RmInt1 group II intron-encoded protein contribute to its maturase and intron DNA-insertion function.
    Molina-Sánchez MD; Martínez-Abarca F; Toro N
    FEBS J; 2010 Jan; 277(1):244-54. PubMed ID: 19951359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.
    Martínez-Rodríguez L; García-Rodríguez FM; Molina-Sánchez MD; Toro N; Martínez-Abarca F
    RNA Biol; 2014; 11(8):1061-71. PubMed ID: 25482895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae).
    Nozaki H; Takahara M; Nakazawa A; Kita Y; Yamada T; Takano H; Kawano S; Kato M
    Mol Phylogenet Evol; 2002 Jun; 23(3):326-38. PubMed ID: 12099791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of cognates of group II introns detected in mitochondrial cox1 genes of a diatom and a haptophyte.
    Ehara M; Watanabe KI; Ohama T
    Gene; 2000 Oct; 256(1-2):157-67. PubMed ID: 11054545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group II introns in eubacteria and archaea: ORF-less introns and new varieties.
    Simon DM; Clarke NA; McNeil BA; Johnson I; Pantuso D; Dai L; Chai D; Zimmerly S
    RNA; 2008 Sep; 14(9):1704-13. PubMed ID: 18676618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel group I intron-encoded endonuclease specific for the anticodon region of tRNA(fMet) genes.
    Bonocora RP; Shub DA
    Mol Microbiol; 2001 Mar; 39(5):1299-306. PubMed ID: 11251845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A group II intron-encoded maturase functions preferentially in cis and requires both the reverse transcriptase and X domains to promote RNA splicing.
    Cui X; Matsuura M; Wang Q; Ma H; Lambowitz AM
    J Mol Biol; 2004 Jul; 340(2):211-31. PubMed ID: 15201048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor.
    Ahlert D; Piepenburg K; Kudla J; Bock R
    J Plant Res; 2006 Jul; 119(4):363-71. PubMed ID: 16763758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.
    Hausner G; Olson R; Simon D; Johnson I; Sanders ER; Karol KG; McCourt RM; Zimmerly S
    Mol Biol Evol; 2006 Feb; 23(2):380-91. PubMed ID: 16267141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases.
    Toor N; Hausner G; Zimmerly S
    RNA; 2001 Aug; 7(8):1142-52. PubMed ID: 11497432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function.
    Mohr G; Perlman PS; Lambowitz AM
    Nucleic Acids Res; 1993 Nov; 21(22):4991-7. PubMed ID: 8255751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments.
    Goguel V; Delahodde A; Jacq C
    Mol Cell Biol; 1992 Feb; 12(2):696-705. PubMed ID: 1310149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural and phylogenetic analysis of the group IC1 introns in the order Bangiales (Rhodophyta).
    Müller KM; Cannone JJ; Gutell RR; Sheath RG
    Mol Biol Evol; 2001 Sep; 18(9):1654-67. PubMed ID: 11504846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA.
    Wank H; SanFilippo J; Singh RN; Matsuura M; Lambowitz AM
    Mol Cell; 1999 Aug; 4(2):239-50. PubMed ID: 10488339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The highly variable mitochondrial small-subunit ribosomal RNA gene of Ophiostoma minus.
    Hafez M; Hausner G
    Fungal Biol; 2011 Nov; 115(11):1122-37. PubMed ID: 22036291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.