These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Cokelet GR; Brown JR; Codd SL; Seymour JD Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468 [TBL] [Abstract][Full Text] [Related]
5. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps. Amaral F; Egger C; Steinseifer U; Schmitz-Rode T Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561 [TBL] [Abstract][Full Text] [Related]
7. On the effect of microstructural changes of blood on energy dissipation in Couette flow. Kaliviotis E; Yianneskis M Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131 [TBL] [Abstract][Full Text] [Related]
8. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data. Yeow YL; Wickramasinghe SR; Leong YK; Han B Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359 [TBL] [Abstract][Full Text] [Related]
9. Spiral groove bearing design for improving plasma skimming in rotary blood pumps. Jiang M; Hijikata W J Artif Organs; 2024 Sep; 27(3):212-221. PubMed ID: 38153606 [TBL] [Abstract][Full Text] [Related]
11. A passive magnetically and hydrodynamically suspended rotary blood pump. Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524 [TBL] [Abstract][Full Text] [Related]
12. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
13. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values. Gester K; Jansen SV; Stahl M; Steinseifer U Artif Organs; 2015 May; 39(5):432-40. PubMed ID: 25377596 [TBL] [Abstract][Full Text] [Related]
14. The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device. Krisher JA; Malinauskas RA; Day SW Artif Organs; 2022 Jun; 46(6):1027-1039. PubMed ID: 35030287 [TBL] [Abstract][Full Text] [Related]
15. A tensor-based measure for estimating blood damage. Arora D; Behr M; Pasquali M Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116 [TBL] [Abstract][Full Text] [Related]
16. Rethinking turbulence in blood. Antiga L; Steinman DA Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411 [TBL] [Abstract][Full Text] [Related]
17. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations. Ozturk M; O'Rear EA; Papavassiliou DV Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190 [TBL] [Abstract][Full Text] [Related]
19. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump. Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098 [TBL] [Abstract][Full Text] [Related]
20. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Nakamura M; Bessho S; Wada S Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]