These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23356400)

  • 1. Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.
    Leslie LJ; Marshall LJ; Devitt A; Hilton A; Tansley GD
    Artif Organs; 2013 Mar; 37(3):267-75. PubMed ID: 23356400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.
    Boehning F; Mejia T; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):761-5. PubMed ID: 24867102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps.
    Amaral F; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation effect of cell exclusion on blood damage in spiral groove bearings.
    Chan CHH; Murashige T; Bieritz SA; Semenzin C; Smith A; Leslie L; Simmonds MJ; Tansley GD
    J Biomech; 2023 Jan; 146():111394. PubMed ID: 36462474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data.
    Yeow YL; Wickramasinghe SR; Leong YK; Han B
    Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiral groove bearing design for improving plasma skimming in rotary blood pumps.
    Jiang M; Hijikata W
    J Artif Organs; 2024 Sep; 27(3):212-221. PubMed ID: 38153606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values.
    Gester K; Jansen SV; Stahl M; Steinseifer U
    Artif Organs; 2015 May; 39(5):432-40. PubMed ID: 25377596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device.
    Krisher JA; Malinauskas RA; Day SW
    Artif Organs; 2022 Jun; 46(6):1027-1039. PubMed ID: 35030287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
    Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.