These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23356596)

  • 1. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control.
    Müller-Oehring EM; Schulte T; Rohlfing T; Pfefferbaum A; Sullivan EV
    Neuropsychology; 2013 Jan; 27(1):48-59. PubMed ID: 23356596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does phasic alerting improve performance in patients with unilateral neglect? A systematic analysis of attentional processing capacity and spatial weighting mechanisms.
    Finke K; Matthias E; Keller I; Müller HJ; Schneider WX; Bublak P
    Neuropsychologia; 2012 May; 50(6):1178-89. PubMed ID: 22386879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-associated modulations of cerebral oscillatory patterns related to attention control.
    Deiber MP; Ibañez V; Missonnier P; Rodriguez C; Giannakopoulos P
    Neuroimage; 2013 Nov; 82():531-46. PubMed ID: 23777759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age.
    Madden DJ; Parks EL; Tallman CW; Boylan MA; Hoagey DA; Cocjin SB; Johnson MA; Chou YH; Potter GG; Chen NK; Packard LE; Siciliano RE; Monge ZA; Diaz MT
    Hum Brain Mapp; 2017 Apr; 38(4):2128-2149. PubMed ID: 28052456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down, bottom-up, and history-driven processing of multisensory attentional cues in intellectual disability: An experimental study in virtual reality.
    Kim J; Hwang E; Shin H; Gil YH; Lee J
    PLoS One; 2021; 16(12):e0261298. PubMed ID: 34932566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual grouping in the human brain: common processing of different cues.
    Seymour K; Karnath HO; Himmelbach M
    Neuroreport; 2008 Dec; 19(18):1769-72. PubMed ID: 18955906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trial history effects in the ventral attentional network.
    Scalf PE; Ahn J; Beck DM; Lleras A
    J Cogn Neurosci; 2014 Dec; 26(12):2789-97. PubMed ID: 24960047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local-global interference is modulated by age, sex and anterior corpus callosum size.
    Müller-Oehring EM; Schulte T; Raassi C; Pfefferbaum A; Sullivan EV
    Brain Res; 2007 Apr; 1142():189-205. PubMed ID: 17335783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual attention deficits in Alzheimer's disease: an fMRI study.
    Hao J; Li K; Li K; Zhang D; Wang W; Yang Y; Yan B; Shan B; Zhou X
    Neurosci Lett; 2005 Sep; 385(1):18-23. PubMed ID: 15970381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age mediation of frontoparietal activation during visual feature search.
    Madden DJ; Parks EL; Davis SW; Diaz MT; Potter GG; Chou YH; Chen NK; Cabeza R
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):262-74. PubMed ID: 25102420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of context-dependent feature conjunction learning in visual search tasks.
    Reavis EA; Frank SM; Greenlee MW; Tse PU
    Hum Brain Mapp; 2016 Jun; 37(6):2319-30. PubMed ID: 26970441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attentional modulation of reward processing in the human brain.
    Rothkirch M; Schmack K; Deserno L; Darmohray D; Sterzer P
    Hum Brain Mapp; 2014 Jul; 35(7):3036-51. PubMed ID: 24307490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontal-parietal synchrony in elderly EEG for visual search.
    Phillips S; Takeda Y
    Int J Psychophysiol; 2010 Jan; 75(1):39-43. PubMed ID: 19903501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain Changes Following Executive Control Training in Older Adults.
    Adnan A; Chen AJW; Novakovic-Agopian T; D'Esposito M; Turner GR
    Neurorehabil Neural Repair; 2017; 31(10-11):910-922. PubMed ID: 28868974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale of attentional focus in visual search.
    Greenwood PM; Parasuraman R
    Percept Psychophys; 1999 Jul; 61(5):837-59. PubMed ID: 10498999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.