BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23356604)

  • 1. Chromosomal evolution of Escherichia coli for the efficient production of lycopene.
    Chen YY; Shen HJ; Cui YY; Chen SG; Weng ZM; Zhao M; Liu JZ
    BMC Biotechnol; 2013 Jan; 13():6. PubMed ID: 23356604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Escherichia coli for Lycopene Production Through Promoter Engineering.
    Shen HJ; Hu JJ; Li XR; Liu JZ
    Curr Pharm Biotechnol; 2015; 16(12):1094-103. PubMed ID: 26238682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method.
    Kang MJ; Lee YM; Yoon SH; Kim JH; Ock SW; Jung KH; Shin YC; Keasling JD; Kim SW
    Biotechnol Bioeng; 2005 Sep; 91(5):636-42. PubMed ID: 15898075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.
    Kim SW; Keasling JD
    Biotechnol Bioeng; 2001 Feb; 72(4):408-15. PubMed ID: 11180061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria.
    Jones KL; Kim SW; Keasling JD
    Metab Eng; 2000 Oct; 2(4):328-38. PubMed ID: 11120644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli.
    Jin YS; Stephanopoulos G
    Metab Eng; 2007 Jul; 9(4):337-47. PubMed ID: 17509919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High isoprenoid flux Escherichia coli as a host for carotenoids production.
    Suh W
    Methods Mol Biol; 2012; 834():49-62. PubMed ID: 22144352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.
    Chiang CJ; Chen PT; Chao YP
    Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids.
    Xu J; Xu X; Xu Q; Zhang Z; Jiang L; Huang H
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):489-499. PubMed ID: 29313097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.
    Ali SA; Chew YW; Omar TC; Azman N
    PLoS One; 2015; 10(12):e0144189. PubMed ID: 26642325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli.
    Albermann C
    Biotechnol Lett; 2011 Feb; 33(2):313-9. PubMed ID: 20882315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli.
    Yuan LZ; Rouvière PE; Larossa RA; Suh W
    Metab Eng; 2006 Jan; 8(1):79-90. PubMed ID: 16257556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin.
    Lemuth K; Steuer K; Albermann C
    Microb Cell Fact; 2011 Apr; 10():29. PubMed ID: 21521516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of lycopene by metabolically-engineered Escherichia coli.
    Sun T; Miao L; Li Q; Dai G; Lu F; Liu T; Zhang X; Ma Y
    Biotechnol Lett; 2014 Jul; 36(7):1515-22. PubMed ID: 24806808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid selection in Escherichia coli using an endogenous essential gene marker.
    Goh S; Good L
    BMC Biotechnol; 2008 Aug; 8():61. PubMed ID: 18694482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3).
    Waegeman H; Beauprez J; Moens H; Maertens J; De Mey M; Foulquié-Moreno MR; Heijnen JJ; Charlier D; Soetaert W
    BMC Microbiol; 2011 Apr; 11():70. PubMed ID: 21481254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli.
    Wei Y; Mohsin A; Hong Q; Guo M; Fang H
    Bioresour Technol; 2018 Feb; 250():382-389. PubMed ID: 29195149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains.
    Rad SA; Zahiri HS; Noghabi KA; Rajaei S; Heidari R; Mojallali L
    World J Microbiol Biotechnol; 2012 Jan; 28(1):313-21. PubMed ID: 22806807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel approach in the biosynthesis of functional carotenoids in Escherichia coli.
    Harada H; Misawa N
    Methods Mol Biol; 2012; 892():133-41. PubMed ID: 22623299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.