These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 23357087)
1. Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of Agaricus subrufescens during the first two weeks of cultivation. Farnet AM; Qasemian L; Peter-Valence F; Ruaudel F; Savoie JM; Ferré E Bioresour Technol; 2013 Mar; 131():266-73. PubMed ID: 23357087 [TBL] [Abstract][Full Text] [Related]
2. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. Stoknes K; Beyer DM; Norgaard E J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. Llarena-Hernández CR; Largeteau ML; Ferrer N; Regnault-Roger C; Savoie JM J Sci Food Agric; 2014 Jan; 94(1):77-84. PubMed ID: 23633302 [TBL] [Abstract][Full Text] [Related]
4. Do spawn storage conditions influence the colonization capacity of a wheat-straw-based substrate by Agaricus subrufescens? Farnet AM; Qasemian L; Peter-Valence F; Ruaudel F; Savoie JM; Roussos S; Gaime-Perraud I; Ziarelli F; Ferré É C R Biol; 2014; 337(7-8):443-50. PubMed ID: 25103829 [TBL] [Abstract][Full Text] [Related]
5. Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. Llarena-Hernández RC; Largeteau ML; Farnet AM; Foulongne-Oriol M; Ferrer N; Regnault-Roger C; Savoie JM World J Microbiol Biotechnol; 2013 Jul; 29(7):1243-53. PubMed ID: 23417262 [TBL] [Abstract][Full Text] [Related]
6. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563 [TBL] [Abstract][Full Text] [Related]
7. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414 [TBL] [Abstract][Full Text] [Related]
8. Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Salvachúa D; Prieto A; Vaquero ME; Martínez ÁT; Martínez MJ Bioresour Technol; 2013 Mar; 131():218-25. PubMed ID: 23347930 [TBL] [Abstract][Full Text] [Related]
10. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Mamiro DP; Royse DJ Bioresour Technol; 2008 May; 99(8):3205-12. PubMed ID: 17761414 [TBL] [Abstract][Full Text] [Related]
11. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. Wang L; Mao J; Zhao H; Li M; Wei Q; Zhou Y; Shao H J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1249-60. PubMed ID: 27337959 [TBL] [Abstract][Full Text] [Related]
12. Physiologic response of Agaricus subrufescens using different casing materials and practices applied in the cultivation of Agaricus bisporus. Dias ES; Zied DC; Rinker DL Fungal Biol; 2013; 117(7-8):569-75. PubMed ID: 23931122 [TBL] [Abstract][Full Text] [Related]
13. Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: 1. Composting, quality, stability and maturity indices. Rashad FM; Saleh WD; Moselhy MA Bioresour Technol; 2010 Aug; 101(15):5952-60. PubMed ID: 20335032 [TBL] [Abstract][Full Text] [Related]
14. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Kertesz MA; Thai M Appl Microbiol Biotechnol; 2018 Feb; 102(4):1639-1650. PubMed ID: 29362825 [TBL] [Abstract][Full Text] [Related]
15. Physical degradation of wheat straw by the in-vessel and windrow methods of mushroom compost production. Lyons GA; McCall RD; Sharma HS Can J Microbiol; 2000 Sep; 46(9):817-25. PubMed ID: 11006842 [TBL] [Abstract][Full Text] [Related]
16. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation. Ribas LC; de Mendonça MM; Camelini CM; Soares CH Bioresour Technol; 2009 Oct; 100(20):4750-7. PubMed ID: 19467593 [TBL] [Abstract][Full Text] [Related]
17. Effect of cultivation practices on the β-glucan content of Agaricus subrufescens basidiocarps. Zied DC; Pardo Giménez A; Pardo González JE; Dias ES; Carvalho MA; Minhoni MT J Agric Food Chem; 2014 Jan; 62(1):41-9. PubMed ID: 24308309 [TBL] [Abstract][Full Text] [Related]
18. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation. Vieira FR; Pecchia JA Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353 [TBL] [Abstract][Full Text] [Related]
20. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost. Jurak E; Punt AM; Arts W; Kabel MA; Gruppen H PLoS One; 2015; 10(10):e0138909. PubMed ID: 26436656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]