These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23357336)

  • 1. The intersections of NMDAR-dependent synaptic plasticity and cell survival.
    Bartlett TE; Wang YT
    Neuropharmacology; 2013 Nov; 74():59-68. PubMed ID: 23357336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor-dependent and metabotropic glutamate receptor-dependent forms of long-term depression coexist in CA1 hippocampal pyramidal cells.
    Nicoll RA; Oliet SH; Malenka RC
    Neurobiol Learn Mem; 1998; 70(1-2):62-72. PubMed ID: 9753587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central neuronal plasticity, low back pain and spinal manipulative therapy.
    Boal RW; Gillette RG
    J Manipulative Physiol Ther; 2004 Jun; 27(5):314-26. PubMed ID: 15195039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting changes in hippocampal synaptic plasticity and cognition in an animal model of NMDA receptor dysfunction in psychosis.
    Wiescholleck V; Manahan-Vaughan D
    Neuropharmacology; 2013 Nov; 74():48-58. PubMed ID: 23376021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional synaptic plasticity induced by conditioned stimulations with different number of pulse at hippocampal CA1 synapses: roles of N-methyl-D-aspartate and metabotropic glutamate receptors.
    Hsu JC; Cheng SJ; Yang HW; Wang HJ; Chiu TH; Min MY; Lin YW
    Synapse; 2011 Aug; 65(8):795-803. PubMed ID: 21218453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency dependency of NMDA receptor-dependent synaptic plasticity in the hippocampal CA1 region of freely behaving mice.
    Buschler A; Goh JJ; Manahan-Vaughan D
    Hippocampus; 2012 Dec; 22(12):2238-48. PubMed ID: 22707377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner.
    van der Heide LP; Kamal A; Artola A; Gispen WH; Ramakers GM
    J Neurochem; 2005 Aug; 94(4):1158-66. PubMed ID: 16092951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor.
    Bard L; Groc L
    Mol Cell Neurosci; 2011 Dec; 48(4):298-307. PubMed ID: 21640188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel presynaptic mechanisms for coincidence detection in synaptic plasticity.
    Duguid I; Sjöström PJ
    Curr Opin Neurobiol; 2006 Jun; 16(3):312-22. PubMed ID: 16713246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood.
    Bagot RC; Tse YC; Nguyen HB; Wong AS; Meaney MJ; Wong TP
    Biol Psychiatry; 2012 Sep; 72(6):491-8. PubMed ID: 22521150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity.
    Li R; Huang FS; Abbas AK; Wigström H
    BMC Neurosci; 2007 Jul; 8():55. PubMed ID: 17655746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo.
    Moga DE; Shapiro ML; Morrison JH
    Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses.
    McCutchen E; Scheiderer CL; Dobrunz LE; McMahon LL
    J Neurophysiol; 2006 Dec; 96(6):3114-21. PubMed ID: 17005622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase.
    Izumi Y; Tokuda K; Zorumski CF
    Hippocampus; 2008; 18(3):258-65. PubMed ID: 18000819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LTD, LTP, and the sliding threshold for long-term synaptic plasticity.
    Stanton PK
    Hippocampus; 1996; 6(1):35-42. PubMed ID: 8878740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advancement in mechanisms of long-term potentiation].
    Xu L; Zhang JT
    Sheng Li Ke Xue Jin Zhan; 2001 Oct; 32(4):298-301. PubMed ID: 12545854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the glycine site of the N-methyl-D-aspartate receptor in synaptic plasticity induced by pairing.
    Krasteniakov NV; Martina M; Bergeron R
    Eur J Neurosci; 2005 May; 21(10):2782-92. PubMed ID: 15926925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IA in play.
    Thompson SM
    Neuron; 2007 Jun; 54(6):850-2. PubMed ID: 17582324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro.
    Wiegert O; Pu Z; Shor S; Joëls M; Krugers H
    Neuroscience; 2005; 135(2):403-11. PubMed ID: 16125856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.