These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 23357652)
1. Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. Campanini B; Pioselli B; Raboni S; Felici P; Giordano I; D'Alfonso L; Collini M; Chirico G; Bettati S Biochim Biophys Acta; 2013 Apr; 1834(4):770-9. PubMed ID: 23357652 [TBL] [Abstract][Full Text] [Related]
2. Effect of the point mutation H148G on GFPmut2 unfolding kinetics by fluorescence spectroscopy. Bosisio C; Quercioli V; Chirico G; D'Alfonso L; Bettati S; Raboni S; Campanini B; Collini M Biophys Chem; 2011 Aug; 157(1-3):24-32. PubMed ID: 21531495 [TBL] [Abstract][Full Text] [Related]
3. Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy. Bosisio C; Quercioli V; Collini M; D'Alfonso L; Baldini G; Bettati S; Campanini B; Raboni S; Chirico G J Phys Chem B; 2008 Jul; 112(29):8806-14. PubMed ID: 18582099 [TBL] [Abstract][Full Text] [Related]
4. Unfolding of Green Fluorescent Protein mut2 in wet nanoporous silica gels. Campanini B; Bologna S; Cannone F; Chirico G; Mozzarelli A; Bettati S Protein Sci; 2005 May; 14(5):1125-33. PubMed ID: 15802645 [TBL] [Abstract][Full Text] [Related]
5. The rough energy landscape of superfolder GFP is linked to the chromophore. Andrews BT; Schoenfish AR; Roy M; Waldo G; Jennings PA J Mol Biol; 2007 Oct; 373(2):476-90. PubMed ID: 17822714 [TBL] [Abstract][Full Text] [Related]
6. Stable intermediate states and high energy barriers in the unfolding of GFP. Huang JR; Craggs TD; Christodoulou J; Jackson SE J Mol Biol; 2007 Jul; 370(2):356-71. PubMed ID: 17512539 [TBL] [Abstract][Full Text] [Related]
7. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
8. Understanding the role of Arg96 in structure and stability of green fluorescent protein. Stepanenko OV; Verkhusha VV; Shavlovsky MM; Kuznetsova IM; Uversky VN; Turoverov KK Proteins; 2008 Nov; 73(3):539-51. PubMed ID: 18470931 [TBL] [Abstract][Full Text] [Related]
9. Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations. Liu SS; Wei X; Dong X; Xu L; Liu J; Jiang B BMC Biochem; 2015 Jul; 16():17. PubMed ID: 26206151 [TBL] [Abstract][Full Text] [Related]
10. Unfolding time distribution of GFP by single molecule fluorescence spectroscopy. Chirico G; Cannone F; Diaspro A Eur Biophys J; 2006 Oct; 35(8):663-74. PubMed ID: 16786346 [TBL] [Abstract][Full Text] [Related]
11. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Seifert MH; Georgescu J; Ksiazek D; Smialowski P; Rehm T; Steipe B; Holak TA Biochemistry; 2003 Mar; 42(9):2500-12. PubMed ID: 12614144 [TBL] [Abstract][Full Text] [Related]
12. Environment effects on the oscillatory unfolding kinetics of GFP. Cannone F; Collini M; Chirico G; Baldini G; Bettati S; Campanini B; Mozzarelli A Eur Biophys J; 2007 Sep; 36(7):795-803. PubMed ID: 17429619 [TBL] [Abstract][Full Text] [Related]
13. Tracking unfolding and refolding of single GFPmut2 molecules. Cannone F; Bologna S; Campanini B; Diaspro A; Bettati S; Mozzarelli A; Chirico G Biophys J; 2005 Sep; 89(3):2033-45. PubMed ID: 15994904 [TBL] [Abstract][Full Text] [Related]
14. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
15. Roles of histidine 31 and tryptophan 34 in the structure, self-association, and folding of murine interleukin-6. Matthews JM; Ward LD; Hammacher A; Norton RS; Simpson RJ Biochemistry; 1997 May; 36(20):6187-96. PubMed ID: 9166791 [TBL] [Abstract][Full Text] [Related]
16. Rational design of analyte channels of the green fluorescent protein for biosensor applications. Tansila N; Tantimongcolwat T; Isarankura-Na-Ayudhya C; Nantasenamat C; Prachayasittikul V Int J Biol Sci; 2007 Nov; 3(7):463-70. PubMed ID: 18071586 [TBL] [Abstract][Full Text] [Related]
17. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability. Madan B; Sokalingam S; Raghunathan G; Lee SG Proteins; 2014 Oct; 82(10):2812-22. PubMed ID: 25044033 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Chirico G; Cannone F; Beretta S; Diaspro A; Campanini B; Bettati S; Ruotolo R; Mozzarelli A Protein Sci; 2002 May; 11(5):1152-61. PubMed ID: 11967371 [TBL] [Abstract][Full Text] [Related]
19. Experimental identification and theoretical analysis of a thermally stabilized green fluorescent protein variant. Akiyama S; Suenaga A; Kobayashi T; Kamioka T; Taiji M; Kuroda Y Biochemistry; 2012 Oct; 51(40):7974-82. PubMed ID: 22963334 [TBL] [Abstract][Full Text] [Related]
20. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. Enoki S; Maki K; Inobe T; Takahashi K; Kamagata K; Oroguchi T; Nakatani H; Tomoyori K; Kuwajima K J Mol Biol; 2006 Sep; 361(5):969-82. PubMed ID: 16889795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]