BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23357679)

  • 1. Fluorescence of tryptophan in aqueous solution.
    Liu H; Zhang H; Jin B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():54-9. PubMed ID: 23357679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.
    Chai S; Yu J; Han YC; Cong SL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():39-44. PubMed ID: 23831976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconsideration on hydrogen bond strengthening or cleavage of photoexcited coumarin 102 in aqueous solvent: a DFT/TDDFT study.
    Miao C; Shi Y
    J Comput Chem; 2011 Nov; 32(14):3058-61. PubMed ID: 21793009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent density functional theory study on the electronic excited-state geometric structure, infrared spectra, and hydrogen bonding of a doubly hydrogen-bonded complex.
    Liu Y; Ding J; Liu R; Shi D; Sun J
    J Comput Chem; 2009 Dec; 30(16):2723-7. PubMed ID: 19399768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the modulation of spectral properties of the formylperylene-methanol clusters by excited-state hydrogen bonding strengthening.
    Yang D; Yang Y; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():379-88. PubMed ID: 24001979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lowest singlet (n,pi*) and (pi,pi*) excited states of the hydrogen-bonded complex between water and pyrazine.
    Cai ZL; Reimers JR
    J Phys Chem A; 2007 Feb; 111(5):954-62. PubMed ID: 17266237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bonding and reactivity of water to azines in their S1 (n,π*) electronic excited states in the gas phase and in solution.
    Reimers JR; Cai ZL
    Phys Chem Chem Phys; 2012 Jul; 14(25):8791-802. PubMed ID: 22532059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited-state hydrogen bonding and deprotonation of esculetin in solution: a DFT/TDDFT study.
    Liu Y; Yang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):213-8. PubMed ID: 21419694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited-state N-H···S hydrogen bond between indole and dimethyl sulfide: time-dependent density functional theory study.
    Liu Y; Yang Y; Jiang K; Shi D; Sun J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15299-304. PubMed ID: 21785786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT/TDDFT study on the excited-state hydrogen bonding dynamics of 6-aminocoumarin in water solution.
    Zhang M; Ren B; Wang Y; Zhao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():191-5. PubMed ID: 23103460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent density functional theory (TD-DFT) study on the excited-state intramolecular proton transfer (ESIPT) in 2-hydroxybenzoyl compounds: significance of the intramolecular hydrogen bonding.
    Lan X; Yang D; Sui X; Wang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():281-5. PubMed ID: 23220669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited-state intramolecular hydrogen bonding of compounds based on 2-(2-hydroxyphenyl)-1,3-benzoxazole in solution: a TDDFT study.
    Li H; Liu Y; Yang Y; Yang D; Sun J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():818-24. PubMed ID: 25000569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TD-DFT study on the hydrogen bonding of three esculetin complexes in electronically excited states: strengthening and weakening.
    Liu YF; Yang DP; Shi DH; Sun JF
    J Comput Chem; 2011 Dec; 32(16):3475-84. PubMed ID: 21919018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent density functional theory study on the coexistent intermolecular hydrogen-bonding and dihydrogen-bonding of the phenol-H2O-diethylmethylsilane complex in electronic excited states.
    Wei NN; Hao C; Xiu Z; Qiu J
    Phys Chem Chem Phys; 2010 Aug; 12(32):9445-51. PubMed ID: 20617267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation dynamics and nature of tryptophan's primary photoproduct in aqueous solution.
    Léonard J; Sharma D; Szafarowicz B; Torgasin K; Haacke S
    Phys Chem Chem Phys; 2010 Dec; 12(48):15744-50. PubMed ID: 20714601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching.
    Zhao GJ; Han KL
    J Phys Chem A; 2007 Sep; 111(38):9218-23. PubMed ID: 17608458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the 4-aminophthalimide spectral properties by hydrogen bonds in water.
    Yang D; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():214-24. PubMed ID: 24835729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential fluorescent chemosensor based on L-tryptophan derivative: DFT based ESIPT process.
    Jayabharathi J; Thanikachalam V; Vennila M; Jayamoorthy K
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():446-51. PubMed ID: 22580140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study.
    Moyon NS; Mitra S
    J Phys Chem A; 2011 Mar; 115(12):2456-64. PubMed ID: 21388154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.