These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

883 related articles for article (PubMed ID: 23357756)

  • 1. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.
    Cantó C; Sauve AA; Bai P
    Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity.
    Wencel PL; Lukiw WJ; Strosznajder JB; Strosznajder RP
    Mol Neurobiol; 2018 Jun; 55(6):4612-4623. PubMed ID: 28698968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new facet of ADP-ribosylation reactions: SIRTs and PARPs interplay.
    Faraone-Mennella MR
    Front Biosci (Landmark Ed); 2015 Jan; 20(3):458-73. PubMed ID: 25553461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles.
    Yeong KY; Tan SC; Mai CW; Leong CO; Chung FF; Lee YK; Chee CF; Abdul Rahman N
    Chem Biol Drug Des; 2018 Jan; 91(1):213-219. PubMed ID: 28719017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Clickable NAD
    Zhang L; Lin H
    Methods Mol Biol; 2017; 1608():95-109. PubMed ID: 28695506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity.
    Pillai JB; Isbatan A; Imai S; Gupta MP
    J Biol Chem; 2005 Dec; 280(52):43121-30. PubMed ID: 16207712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis sirtuins and poly(ADP-ribose) polymerases regulate gene expression in the day but do not affect circadian rhythms.
    Kim JH; Bell LJ; Wang X; Wimalasekera R; Bastos HP; Kelly KA; Hannah MA; Webb AAR
    Plant Cell Environ; 2021 May; 44(5):1451-1467. PubMed ID: 33464569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue.
    Rappou E; Jukarainen S; Rinnankoski-Tuikka R; Kaye S; Heinonen S; Hakkarainen A; Lundbom J; Lundbom N; Saunavaara V; Rissanen A; Virtanen KA; Pirinen E; Pietiläinen KH
    J Clin Endocrinol Metab; 2016 Mar; 101(3):1263-73. PubMed ID: 26760174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in the function and regulation of ADP-Ribosylation.
    Hottiger MO; Boothby M; Koch-Nolte F; Lüscher B; Martin NM; Plummer R; Wang ZQ; Ziegler M
    Sci Signal; 2011 May; 4(174):mr5. PubMed ID: 21610250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP is involved in replicative aging in Neurospora crassa.
    Kothe GO; Kitamura M; Masutani M; Selker EU; Inoue H
    Fungal Genet Biol; 2010 Apr; 47(4):297-309. PubMed ID: 20045739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs.
    Carter-O'Connell I; Cohen MS
    Curr Protoc Chem Biol; 2015 Jun; 7(2):121-39. PubMed ID: 26344237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Insights into the Roles of NAD+-Poly(ADP-ribose) Metabolism and Poly(ADP-ribose) Glycohydrolase.
    Tanuma S; Sato A; Oyama T; Yoshimori A; Abe H; Uchiumi F
    Curr Protein Pept Sci; 2016; 17(7):668-682. PubMed ID: 27817743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin.
    Benavente CA; Schnell SA; Jacobson EL
    PLoS One; 2012; 7(7):e42276. PubMed ID: 22860104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD+ and NADH in cellular functions and cell death.
    Ying W
    Front Biosci; 2006 Sep; 11():3129-48. PubMed ID: 16720381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases.
    Ma Y; Chen H; He X; Nie H; Hong Y; Sheng C; Wang Q; Xia W; Ying W
    Curr Drug Targets; 2012 Feb; 13(2):222-9. PubMed ID: 22204321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases.
    Jęśko H; Strosznajder RP
    Folia Neuropathol; 2016; 54(3):212-233. PubMed ID: 27764514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?
    Zhang J
    Bioessays; 2003 Aug; 25(8):808-14. PubMed ID: 12879452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis.
    Podyacheva E; Toropova Y
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ADP-ribose). The most elaborate metabolite of NAD+.
    Bürkle A
    FEBS J; 2005 Sep; 272(18):4576-89. PubMed ID: 16156780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.